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Abstract

Excess emissions are air pollution releases that exceed permitted levels and occur during
facility start-ups, shutdowns, or malfunctions. While they are violations of the federal Clean
Air Act, states have historically granted violating facilities automatic exemptions; limiting
enforcement and weakening existing regulation. Recent efforts to harmonize state and federal
rules have ignited debate surrounding optimal excess emissions regulation. Using Texas data
from 2002-2017, we show robust evidence on the costs of excess emissions. We find that
excess emissions increase harmful nearby pollution and elderly mortality, and are responsible
for an average of 35 annual deaths in Texas alone. Using excess emissions as an instrument for
ozone concentrations, we find that a 10% increase in monthly average ozone increases elderly
mortality by 3.9%, driven by increased deaths in the oldest age groups.
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Over the past half century, the U.S. Environmental Protection Agency (EPA) has pursued a broad
portfolio of policies to improve air quality across the country. These efforts, mainly under the
framework of the Clean Air Act, span a wide range of regulatory mechanisms including setting
and enforcing ambient air quality standards for criteria air pollutants; promulgating source-level
pollution control technology requirements; establishing and maintaining a network of air quality
monitoring stations; and tracking emissions of harmful pollutants. By most conventional metrics,
these federal efforts, bolstered by state and local governments, have generated enormous dividends.
Since the passage of the Clean Air Act in 1970, ambient pollutant concentrations and pollutant
emissions have decreased (Environmental Protection Agency 2017, Hand et al. 2012, Lin, Jacob
and Fiore 2001, Selden, Forrest and Lockhart 1999) and retrospective analyses have found that the
benefits of reduced pollution are much higher than associated abatement costs, with the majority
of benefits attributable to improved health (Environmental Protection Agency 1997; 1999b).

Despite these achievements, there are a number of persistent issues related to air pollution
regulation, including interstate air pollution (Monogan, Konisky and Woods 2017, Revesz and
Leinke 2016), areas with persistent air quality problems (e.g., southern California), and disparities
in exposure for vulnerable subpopulations (Brooks and Sethi 1997, Miranda et al. 2011, Morello-
Frosch, Pastor and Sadd 2001, Colmer et al. 2020, Currie, Voorheis and Walker 2020). Another
important area of air pollution regulation that has largely been under-studied and poses important
threats to health and environmental quality is excess emissions.

Excess emissions are defined as releases above permitted levels that occur due to start-ups,
shutdowns, or malfunctions (Environmental Protection Agency 2015) and these emissions are due
to a wide variety of causes ranging from avoidable large-scale accidents (e.g. explosions) to the
unavoidable need to shutdown a plant due to an impending hurricane.1 Excess emissions events are
common and can result in large amounts of pollutant releases. On an average day in Texas there is
one excess emissions event that releases at least 10 tons of a criteria pollutant. A recent EPA report
identified natural gas gathering operations across the country as point sources that systematically
release large amounts of excess emissions that often go undetected by state regulators (Environ-
mental Protection Agency 2019a). However, despite the frequency and size of these events, excess
emissions have been under-studied by environmental economists and other social scientists, are
not generally reported in the national media, and are under-regulated at both the state and fed-
eral level. There are also no past studies of the health effects specifically attributable to excess
emissions, which is our focus here.

1Permitted levels for various pollutants are set by state environmental agencies in order to ensure that industrial
point sources of pollution do not cause or contribute to violations of the National Ambient Air Quality Standards.
Permitted levels are stack and pollutant specific and are usually expressed in pounds of pollutant releases per hour. As
a result, each facility can have multiple permitted levels (since each stack releases multiple pollutants) for each of its
stacks.
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This study falls within a broader literature in economics that has, over several decades, inves-
tigated the relationship between pollution and health outcomes. A focus of that literature has been
on reducing factors that could bias the estimated dose-response function—the function describing
how changes in ambient concentrations of pollutants are associated with increases of mortality or
morbidity. Examples of such sources of bias include avoidance (Moretti and Neidell 2011), resi-
dential sorting (Graff Zivin and Neidell 2013), omitted variable bias (Deryugina et al. 2019), en-
dogenous policy adoption (Hollingsworth and Rudik 2019), measurement error (Aizer et al. 2018),
and the challenge of separately identifying the effects of individual pollutants (Hollingsworth and
Rudik Forthcoming). An identification strategy employed some work relies on large exogenous
pollution shocks. For example, several papers have examined infant health impacts due to changes
in maternal pollution exposure attributed to openings and closures of industrial facilities releasing
toxic pollutants (Currie et al. 2015), short-term refinery closures (Lavaine and Neidell 2017), and
coal-fired power plant closures (Muzhe and Shin-Yi 2018). Additional examples include Ransom
and Pope III (1995), who examine hospital admissions and mortality impacts of a temporary clo-
sure of a steel mill in Utah and Hanna and Oliva (2015) who consider the labor outcomes of a
refinery closure in Mexico City. Outside the economics, there is a long history of epidemiology
research that studies the negative health impacts of pollutants such as ozone, particulate matter,
nitrogen dioxide and sulfur dioxide (Dockery et al. 1993, Pope III et al. 2002, Klemm and Mason
2003, Jerrett et al. 2009, Smith, Xu and Switzer 2009, Lepeule et al. 2012, Di et al. 2017).

The pollution shocks we study in this paper are large-scale releases from industrial facilities
due to mostly unplanned start-ups, showdowns, and malfunctions. In this sense, excess emissions
are similar to changes in pollution that result from exogenous plant openings and closures since
the changes are unexpected and of a similar magnitude. Thus we expect that our results will be
similar in both sign and magnitude of excess emissions events on pollution and health outcomes
with the results of prior studies examining openings and closings.

Our paper is the first to directly connect excess emissions with adverse changes in ambient air
quality and mortality. We do so through the analysis of a rich dataset of daily excess emissions
events from industrial facilities in Texas from 2002 to 2017. We take a two step approach in
our analysis. First, we establish a link between excess emissions and increases in nearby ozone
concentrations. Unlike previous work that simulates the pollution concentration effects of excess
emissions using atmospheric plume/simulation models, our approach uses historic, observational
data to show that excess emissions cause increases in actual ozone concentrations measured at air
quality monitoring sites across Texas. The second step in our analysis is to estimate the effects of
excess emission events on adverse health outcomes, by linking these events to increases in nearby
elderly mortality. We show robust evidence that excess emissions cause an increase in all-cause
elderly mortality. Consistent with prior literature, we find no clear effect on mortality until age 65.
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We then take another methodological approach that directly links pollution concentrations and
mortality in an instrumental variable framework using excess emissions releases as instruments for
ozone concentrations. The instruments operate in the expected direction and are well-powered.
The IV results clearly demonstrate that excess emissions events lead to increased elderly mortality
through increased ozone concentrations. Our instrumental variable results demonstrate that excess
emissions events lead to increases in harmful ozone concentrations and that this increased pollution
causes increases in elderly mortality. We show that excess emissions cause, on average, 35 elderly
deaths per year in Texas. Using an integrated assessment model we estimate average total damages
(inclusive of mortality, morbidity, and other damages) of at least $74 million per year.

Our work provides two contributions to the literature. First, we demonstrate the severity of the
impact of excess emissions on ambient air quality and mortality. Our study is the first to identify
the environmental and health effects of this particular category of industrial releases, which has
so far been relatively unexplored by environmental economists. This contribution is particularly
salient in light of the recent regulatory conflict on how excess emissions regulations should be
enforced.2 Second, we contribute to the small and growing literature demonstrating that pollution
affects elderly mortality using a quasi-experimental research design. While a number of previ-
ous studies have shown associations between pollution and non-infant mortality (e.g., Pope et al.
(2019), Gouveia and Fletcher (2000) and Pope III et al. (2002)), only a few recent studies have
shown effects using a quasi-experimental research design (Deryugina et al. 2019, Deryugina and
Reif 2020, Anderson 2020, Chay, Dobkin and Greenstone 2003, Chen et al. 2013, Hollingsworth
and Rudik Forthcoming). We contribute to this literature by providing clear estimates of how in-
creased ozone concentrations affect elderly mortality. We focus on eldrerly mortality as the most
severe of health events amongst the most vulnerable population group. Our choice is driven by as-
sociational evidence in the literature that the elderly are more likely to have a larger relative change
in the probability of mortality conditional on exposure to pollution (Gouveia and Fletcher 2000).
In addition, two thirds of all mortality cases in the US occur in age groups 65 years and older
(Di et al. 2017) leaving limited scope to find mortality effects in the non-elderly. Using excess
emissions as an instrument for mean ozone concentrations we find that a 10% change in monthly
average ozone increases elderly mortality by 3.9%. We also find that this increase is driven by
deaths of those aged over 85 who see a 5.2% change in mortality.

The remainder of the paper is organized as follows. Section 1 provides relevant regulatory
background on excess emissions and reviews the extant literature in environmental and social sci-
ences. We then provide a description of the data used in our analysis in Section 2. Section 3
conducts an overview of the methodology used in the paper, including reduced form, event study,
and instrumental variables specifications. Section 4 presents results and Section 5 concludes.

2More detail on the regulatory framework of excess emissions is provided in section 2.
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1 Regulatory Background

Excess emissions are often attributed to unexpected or unavoidable circumstances, and thus can be
difficult to manage. This is especially true if the root cause of an excess emission event is beyond
the control of a facility, such as the shut-down of a plant before an impending natural disaster.
However, excess emissions can also occur due to human error or poor maintenance. The distinction
between truly unavoidable events and those that could have been avoided poses a heavy regulatory
burden on state environmental agencies. As an administrative shortcut, state agencies for decades
have relied on provisions in their State Implementation Plans (SIPs), the plans detailing how each
state will maintain compliance with the Clean Air Act, to both automatically exempt many excess
emissions events from being considered violations of the Clean Air Act and to allow facilities to
claim affirmative defense provisions that shield them from civil lawsuits (Environmental Protection
Agency 2015). These exemptions eased the enforcement burden on facilities by allowing them to
request relief from penalties.

Excess emissions are technically violations of the Clean Air Act, but, historically, they have
generally not been treated this way by the EPA and state agencies. While, the EPA has been
aware of this issue since 1977, it was not until 2013 that the agency called for states to “remove

impermissible provisions from their SIPs and to adopt other, approvable approaches for addressing

excess emissions” (Environmental Protection Agency 2015). This call to remove “impermissible

provisions” from state SIPs specifically targeted the affirmative defense and automatic exemption
provisions discussed above.

The discrepancies around how excess emissions are treated from a regulatory perspective in
SIPs, first came to light in 2011 when the Sierra Club filed a petition arguing that several states
included language in their SIPs that was not in accordance with the Clean Air Act (Sierra Club
2011). Responding to the petition, the EPA released a final SIP call in 2015 (originally proposed
in 2013) suggesting that 36 states had provisions in their SIPs that were “substantially inadequate

to meet CAA requirements” (Environmental Protection Agency 2015) with regards to how excess
emissions were treated. Those states were asked to submit updated SIPs that would bring the
way excess emissions were regulated in accordance with the Clean Air Act. The 2015 SIP Call
was challenged in the courts shortly after it was finalized and was held in abeyance since 2017
(Environmental Protection Agency 2019b). More recently, EPA’s Region 6 and Region 4 offices
finalized rules that withdraw the 2015 SIP Call findings for Texas (Region 6 office) and North
Carolina (Region 4 Office) (Environmental Protection Agency 2020c;b). Based on the Region 6
rule, the Texas Commission on Environmental Quality (TCEQ) can once again include affirmative
defense provisions in it’s SIP (Environmental Protection Agency 2020c). In a similar deregulatory
move, the EPA Region 4 rule will allow North Carolina to continue issuing automatic exemptions
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(Environmental Protection Agency 2020b) for excess emissions events. In October 2020, the EPA
released a guidance memorandum to all Regional Offices, that further weakened the regulatory
framework this time on a national level (Environmental Protection Agency 2020a) by allowing
automatic exemptions and affirmative defense provisions to be implemented in SIPs of all states.
This guidance is predicated on the concept of cooperative federalism according to which states
should be afforded flexibility in their efforts to achieve and maintain compliance with the National
Ambient Air Quality Standards (NAAQS), but in practice may allow state agencies to exempt
excess emissions from traditional enforcement3.

Estimating the costs associated with excess emissions is important so that an effective regula-
tory framework can be designed. Yet, estimating these costs is challenging since little is known
about the incidence and magnitude of excess emissions. Moreover, their impacts are poorly un-
derstood. The lack of research is in part due to a lack of available data; Texas is the only state
that makes excess emissions data publicly available in a systematic way that is usable for research
within a short time-period following an event. It is therefore no coincidence that all studies that
have examined the occurrence and impacts of excess emissions have focused on Texas.4

Using these data, a small number of papers in atmospheric science have studied the incidence
and frequency of excess emissions in Texas. These studies have used either atmospheric plume
models or case studies of specific emissions events to demonstrate the potential impact of excess
emissions on ambient air quality. Collectively, these studies document that excess emissions are
frequent, large in magnitude, last from a few hours to several days (or even weeks) and can exceed
a facility’s routine annual emissions (Murphy and Allen 2005, Nam et al. 2006, Choi, Hyde and
Fernando 2006, Kulkarni, Chellam and Fraser 2007, Vizuete et al. 2008, McCoy, Fishbeck and
Gerard 2010).

No study has, to our knowledge, examined the environmental impacts of excess emissions us-
ing observational air quality data from EPA pollution monitors. In addition, no prior work has
used observed mortality data to identify the impact of excess emissions on premature mortality.
The closest previous paper is Zirogiannis, Hollingsworth and Konisky (2018), who use an inte-
grated assessment model to estimate health damages from excess emissions, but do not directly
link emissions and mortality.

Only three prior studies in the social sciences have examined the incidence and magnitude
of excess emissions in Texas. Ozymy and Jarrell (2011) documented excess emissions from 18

3A more detailed analysis of the regulatory background regarding excess emissions is provided in Zirogiannis,
Hollingsworth and Konisky (2018)

4While several states require facilities to report data on excess emissions, the information is made available to
the public only on a facility-by-facility basis. Louisiana, Oklahoma and Texas maintain comprehensive datasets that
allow annual excess emissions data on multiple facilities to be retrieved by a single query. In addition, Texas is the
only state that makes daily-level information on excess emissions events publicly available almost in real time. More
information on Texas’s reporting requirements for excess emissions events is provided in Section 2.
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oil refineries from 2003 to 2008 and find that each refinery, on average, experienced 351 excess
emissions events per year. Ozymy and Jarrell (2011) also compare excess emissions releases to
emissions reported by the same refineries to the Toxics Release Inventory (TRI). They find that, in
a small number of cases, pollutant releases due to excess emissions events are higher than the re-
leases of the same pollutants reported to the TRI. Zirogiannis, Hollingsworth and Konisky (2018)
detailed excess emissions from all industrial sources in Texas from 2002 to 2017. While the au-
thors do not directly study the health effects of excess emissions, they do provide preliminary
damage estimates from an integrated assessment model (Heo 2015, Heo, Adams and Gao 2016).
Li, Konisky and Zirogiannis (2019) study the racial, ethnic and income disparities of excess emis-
sions in Texas at the facility and census track level. They find that median income and percentage
of Black population are positively associated with the incidence of excess emissions.

2 Data

To conduct our analysis, we require data on excess emissions, ozone concentrations, weather, and
mortality. In this section, we discuss each in turn.

2.1 Excess emissions data:

The main data used in this paper come from the Texas Commission on Environmental Quality
(TCEQ). Industrial facilities in Texas have been required to report total annual amounts of excess
emissions to the TCEQ’s Emissions Inventory (EI) since 1990. Texas House Bill 2912, which
came into effect in late 2001, established the requirement that all industrial facilities report excess
emissions within 24 hours to the state’s Air Emissions and Maintenance Events (AEME) dataset
(Texas House of Representatives 2001).5,6

To comply with these regulations, facilities provide a preliminary disclosure in the form of an
initial report to the TCEQ for each excess emissions event within 24 hours of its occurrence. After

5Due to the difference in the timing of the reporting requirement there are often non-trivial discrepancies between
the amounts of excess emissions reported in the EI and AEME datasets. Zirogiannis, Hollingsworth and Konisky
(2018) provide a detailed discussion regarding these discrepancies. In this paper, we only use data from the AEME
dataset.

6The TCEQ does not use the term “excess emissions events” as part of the Texas Administrative Code (TAC).
Instead the agency uses the term “emissions events”, to define “any upset event or unscheduled maintenance, start-
up, or shutdown activity, from a common cause that results in unauthorized emissions of air contaminants from one
or more emissions points at a regulated entity”. Exceedances of a facility’s permitted level can also occur during
scheduled start-up, maintenance or shutdown (SSMS) events. If emissions exceed a facility’s permitted level during
an SSMS event, then that event is characterized as an “emissions event” by the TCEQ. Throughout the paper we will
use the term “excess emissions” to denote emissions that exceed a facility’s permitted level either due to a scheduled
or an unscheduled start-up, shutdown or maintenance event. More details on the exact definitions of each of those
terms in the TAC are provided in the Appendix.
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submission of the initial report, the TCEQ publicly posts details regarding the emissions event,
including information on the likely type and estimated quantity of pollution released.7 Each initial
report contains facility-level information (name, location, id number, etc.), information on the pol-
lutants released (contaminant name, amount and duration of the release, beginning and ending time
of the release) as well as an explanation of why the release occurred and what action was taken to
minimize the release or fix the problem that caused it (Texas Commission on Environmental Qual-
ity 2016). In addition, facilities are required to state the pollutant permit limit (usually expressed
in pounds per hour) from the stack or source that released each pollutant. Because events are self
reported before they are fully investigated, some reported events may not have in reality exceed the
permitted limit. These events are later revised downward to reflect the new information. After the
emissions event has ended, the facility has two weeks to submit a final report, where it can provide
the updated information regarding both the specific pollutants and the amounts released.

In the event that a final report is not filed, then the initial report becomes the de facto final
report. In a majority of cases a final report is submitted that corrects for an overestimate of pollu-
tion releases in the initial report. Recall that excess emissions are those events that occur during
malfunctions as well as during start-ups, shut-downs or maintenance that are above a facility’s per-
mitted levels of emissions. Therefore emissions events (or portions of the events) can occur at rates
below permitted levels that are neither violations nor “excess emissions.” Due to the downward
revisions that often occur from an initial to a final report, the AEME dataset often contains excess
emissions reports from events that are eventually found to have not released pollutants at a rate
over the permitted threshold and are therefore not excess emissions.

To ensure that this idiosyncratic reporting feature does not impact our results, we perform
our analysis using two datasets: 1) a “full dataset” that includes all emissions events (scheduled
or unplanned) documented in the final report (regardless of whether or not the emissions exceed
the permitted threshold); and 2) a “censored dataset” that includes only the portion of emissions
documented in the final report that are above the permitted threshold. The reason for this distinction
is twofold.

First, from a health perspective it does not matter whether an emissions event surpasses a
permitted threshold. What should matter is the overall effect the event has on air quality and sub-
sequent health outcomes. These effects are unlikely to have discontinuities at permitted thresholds.
For example, suppose that facility A emits 1,000 lbs of SO2 over a one hour period, with a permit-
ted limit of 300 lbs per hour. The “full dataset” would consider the entire 1,000 lbs released as the
excess emissions from that event, while the “censored dataset” would only consider 700 lbs (i.e.
the amount over the permitted limit).

7http://www2.tceq.texas.gov/oce/eer/
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Second, from a regulatory and enforcement perspective, the difference between the two out-
comes is important; one could trigger a violation of the Clean Air Act, while the other is not
considered a violation. As we discuss in Section 4, the main findings of our work are not affected
by the choice between the two datasets, indicating that the majority of the increased pollution and
associated health damages come from excess emissions events that exceed the permitted limit.8

We therefore present results using the “censored” dataset in the paper and show results using the
“full” dataset in the Appendix only. This is consistent with findings in earlier work showing that
the majority of excess emissions releases come from the largest events (Zirogiannis, Hollingsworth
and Konisky 2018).

Table 1 provides information on the number of excess emissions events by event and report
type. The censored dataset contains information on 45,231 events from 2002 to 2017(Q1); 83% of
events are unplanned emissions events and 17% are related to scheduled maintenance, start-up or
shutdown (SMSS).9 Using the censored dataset, Figure 1 shows the number of facilities reporting
to the TCEQ’s AEME dataset every year as well as the annual count of excess emissions events
recorded. In an average year there are around 465 facilities reporting over 2,900 excess emissions
events.10

2.2 Weather data:

Information on weather comes from the National Oceanic and Atmospheric Administration’s (NOAA)
NCEP-NCAR Reanalysis 1 model. This model provides daily weather data in 2.5◦ latitude by 2.5◦

longitude cells that cover the entire globe (Kalnay et al. 1996).11 Daily weather at each pollution
monitor-day is extracted from the 2.5◦ latitude by 2.5◦ longitude grid cell in which each pollu-
tion monitor is located. For each cell we obtain data on average air temperature (C◦), pressure
(kPA), relative humidity (%), wind speed (m

s ), and daily precipitable water ( kg
m2 ).12 A list of hur-

ricanes making landfall and the dates of impact were provided by the NOAA Hurricane research
division.13

8As discussed earlier in this section, due to the downward revisions that often occur between an initial and a final
report, some excess emissions events do not exceed the permitted threshold.

9An analogous table with the descriptive statistics of the full dataset can be found in the Appendix Table A1.
10Figure A1 in the Appendix reports the annual count of excess emissions events and reporting facilities for the full

dataset.
11https://www.esrl.noaa.gov/psd/data/ gridded/data.ncep.reanalysis.html
12All variables reported are surface level except for daily precipitable water, which is the total water in the atmo-

spheric column.
13The list can be found at http://www.aoml.noaa.gov/hrd/tcfaq/E23.html and the landfall start dates can

be found at https://coast.noaa.gov/hurricanes/
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2.3 Mortality data:

In our mortality analysis, we consider the death rate per 100,000 population in each county-year-
month by cause. Underlying mortality micro-data come from the Centers for Disease Control and
Prevention Multiple Cause of Death (MCOD) files for 2002-2017. The MCOD provide informa-
tion on the month and year of death; county of decedent residence; basic decedent demographic
information including age, race, and gender; and the underlying cause of death with up to twenty
contributing causes.14 Each cause of death is reported using an International Classification of
Diseases, Tenth Revision (ICD-10) code as well as by an aggregated 113 cause of death code.15

We extract a count of death by each cause in each county and month for all deaths where the
decedent was above the age of 65. We combine mortality data with county-year-age population
data to calculate the county-month-year death rate by cause per 100,000 population for those aged
65+, 65-74, 75-84, and 85+. Population data come from the Surveillance, Epidemiology, and
End Results (SEER) program, which is supported by the National Cancer Institute. SEER data
report population estimates at the county-year-race-single year of age level. Mortality rates are
age-standardized to the U.S. population.

2.4 Pollution Data:

We obtained daily ozone (O3) concentration data from the EPA in pre-generated daily files. When
in operation each monitor reports the hourly average ozone concentration consistent with the Na-
tional Ambient Air Quality Standard (NAAQS). The federal NAAQS for ozone is 70 parts per
billion (ppb) over an eight-hour time period and for any given day our data report the average one-
hour ozone reading.16 In addition to pollution data, information regarding each monitor’s physical
location (i.e. latitude and longitude) is provided. We use these location data to determine the set
of excess emissions events that occur near each pollution monitor as outlined in Section 3.

2.5 Descriptive Statistics

Table 2 reports summary statistics for the variables of interest that will be used in our empirical
analysis related to air pollution and mortality.17 The first row of Table 2 shows data on ozone
concentrations at the monitor-day level. The mean ozone concentration is well below the NAAQS

14The month and year of each death are the finest temporal granularity reported.
15In addition to obtaining information on all-cause mortality, we use the aggregated recode to extract deaths

related to cardiovascular (codes 53-75) and respiratory (76-89) mortality, https://www.cdc.gov/nchs/data/

datalinkage/underlying_and_multiple_cause_of_death_codes.pdf, which we examine in the Appendix.
16In order to remain in compliance with the ozone NAAQS standard, a county’s annual forth highest daily value

(averaged over 3 years) cannot exceed 70ppb.
17Table A3 in the Appendix provides additional descriptive statistics for variables that are used in robustness checks.
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threshold, with the maximum observations exceeding the NAAQS. The table also reports informa-
tion on daily excess emissions releases from all industrial sources within 15 miles of a monitor.
The descriptive statistics depict the heavily skewed nature of excess emissions releases. For most
pollutants the mean release is just above zero tons. However, at the extreme, cumulative CO emis-
sions within the 15 mile distance bin can reach upwards of 462 tons in a single day. The bottom
two panels of Table 2 display summary statistics for the variables used in our mortality analysis:
all cause mortality, measured as the death rate per 100,000 of a population in a given county, year,
and month.

3 Methodology

3.1 Air Pollution

The first part of our analysis examines how release of precursor pollutants from excess emissions
events impact ozone concentrations. Ground-level ozone is not directly emitted and is thus a sec-
ondary pollutant formed by a series of complex interactions related to both local weather (sunlight)
and concentrations of primary precursor pollutants, NOx, VOCs, and CO (Muller and Mendelsohn
2012b).

We estimate the change in the daily, d, ozone concentration at a given monitor, m, associated
with nearby excess emissions releases of pollutant precursor j ∈P using the following fixed-effects
model:

Ozonemd = β j

(
EE release of j within k milesmd|

P

∑
i
(EE release of i 6= j within k milesmd) = 0

)
(1)

+ηXmd +δmy +ωw + εmd

Our outcome of interest is the average daily ozone concentration of at monitor m on a given day
d. We consider the excess emissions from events that release only a single pollutant precursor j

(NOx, VOCs, or CO). We do this because, excess emissions events that release multiple pollutants
(eg. NOx and VOCs and CO) would not allow for a clean identification of the effect that each
individual pollutant has on ozone. Table A2 in the Appendix documents the percentages of cases
where only a single pollutant is released from excess emissions events.

As a robustness check we also consider, in the Appendix, two alternative versions of Equa-
tion 1. One where ozone concentration is transformed using the inverse hyperbolic sine and another
with the more common natural log of the concentration, f (x) = ln(x+1).
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We consider multiple versions of Equation 1, gradually increasing the distance of what is con-
sidered a nearby excess emissions event. We estimate specifications that increase this threshold
from five to twenty-five miles in 5 mile increments—e.g. 0-5 miles, 0-10 miles. As an alternative
approach, we also consider mutually exclusive five-mile distance bins that do not overlap—e.g.
0-5 miles, 5-10 miles. It is a priori unclear if releases of a precursor pollutant should have greater
effect closer to the emissions point source or farther away. Excess emissions events release large
quantities of pollutants often at a very high rate (lbs/hour). These two factors make it likely that the
precursor pollutants are emitted in concentrations far denser than those from a stack during normal
operation. It is possible that the concentrations are so dense that they prohibit necessary chem-
ical or physical reactions that lead to the formation of secondary pollutants (Cohan et al. 2005).
Moreover, excess emissions are not necessarily emitted at the stack level. Since releases induced
by a malfunction could happen anywhere, including at the ground-level (for example, a chemical
storage tank), we should not necessarily expect excess emissions to follow a similar pattern of
atmospheric transport and deposition as routine stack emissions from a facility (Sutton, Reis and
Baker 2009). It is because of the uncertainty associated with these differences in emissions rate,
height, and concentration that we consider multiple distances in our analysis.

Our preferred specification also includes a vector of daily weather variables (Xmd), monitor-
by-year fixed-effects (δmy), and week fixed-effects (ωw). Week fixed-effects (ω1 to ω52) are in-
cluded to ensure we are not spuriously picking up a seasonal relationship between pollutant con-
centrations and excess emissions. Monitor-by-year fixed-effects are inclusive of monitor and year
fixed-effects. Monitor fixed-effects account for time-invariant differences in the mean pollutant
concentration faced by different monitors, which could be due to either real differences in local
pollution or the strategic placement of air pollution sources (Monogan, Konisky and Woods 2017).
Year fixed-effects account for any pollution shocks that are common to all monitors in a given
year, such as reduced manufacturing from the great recession. Monitor-by-year fixed-effects have
the added advantage of allowing for each monitor to have a unique, non-linear time trend. This
is of particular importance as some monitors may be located near pollutant point sources that
may experience related trends in both routine and excess emissions events.18 Standard errors are
clustered at the county-level to correct for the potential that the within-county prediction error is
correlated across time. As a robustness check, we consider in Figure A3 of the Appendix, two
additional specifications without monitor-by-year fixed-effects. One specification includes daily
weather variables, while another only controls for monitor and year fixed-effects.

18One data limitation of our approach is that we do not observe within year variation of routine emissions at the
facility level. Routine emissions data are only reported as annual totals in the TCEQ Emissions Inventory. Moreover,
routine data are only reported for Title V facilities. Therefore, even if some assumptions could be made about the
seasonal variation of routine emissions to estimate sub-annual routine emissions, the resulting data product would
exclude many small, non-Title V facilities that do not report routine emissions in the TCEQ Inventory.
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3.1.1 Event study

We also conduct an event study specification that serves as an additional test of our identifying
assumption that excess emission events are responsible for the increased pollution concentrations.
Specifically, we examine how the pollution concentration at monitor m on day d is affected by large
excess emission events within five days using the following standard event study specification:

Ozone concentrationmd = β<−5

t=d−1000

∏
t=d−6

1(EE release within k milesmt)

+
t=d−2

∑
t=d−5

βt1(EE release within k milesmt) (2)

+
t=d+5

∑
t=d

βt1(EE release within k milesmt)

+β>5

t=d+1000

∏
t=d+6

1(EE release within k milesmt)

+ηXmd +δmy +ωw + εmd.

Here negative values of t indicate that there will be an event t days in the future from date
d. Likewise positive values of t indicate that an event occurred t days before date d. To avoid
collinearity, we consider releases that occur one day in the future (i.e., when t =−1) to be the ref-
erence category; all β coefficients are interpreted as the effect of an excess emissions that occurred
t days ago relative to the effect the event had on pollution concentrations the day before it occurred.
The values and confidence intervals of β−5 to β−2 are a test of our identifying assumption since the
estimated coefficients should not be statistically different from the reference. That is, there should
be no effect of the event before it happens. The estimated coefficients for t = 0 to t = 5 plot how
the treatment effect estimate changes across time. We expect the largest effect to be on the day of
the event and that the effect will decay as time passes and emissions dissipate.

For completeness we also estimate how events beyond five days from date d affect the pollution
concentration on day d. We estimate the average effect of all events before (β<−5) and after (β>5)
the five day window. Since the days immediately surrounding the excess emissions date are likely
to be the most comparable with date d and the events outside the five day window are averaged
together, we graphically report only the estimated effects within five days of the event. We report
all coefficient estimates in Table A5 of the Appendix.

The event study controls for daily weather (Xmd), monitor by year fixed effects (δmy), and week
fixed effects (ωw). Standard errors (εmd) are clustered at the monitor level.
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The distribution of tons released in excess emissions events is quite skewed. 78% of excess
emissions are released by the top five percent of events by size and over 3% of events emit less
than one pound. The event study framework considers only a binary outcome—denoted by an
indicator variable, 1(EE release within k milesmt)—and does not account for skew or differences
in event size. The estimated treatment effect is therefore the effect of the average excess emissions
event. It may very well be that the average excess emissions event has no discernible effect on
air quality since there are so many extremely small events. As the purpose of the event study
specification is to test for pre-trends and to examine how the effect decays across time, we restrict
our attention to excess emissions events in the 95th percentile of size or above, those events that are
the most likely to affect air quality in a detectable manner. All other analyses in the paper include
all excess emissions events, regardless of size and directly account for the amount of pollution
released instead of using a binary event indicator.

3.2 Mortality

After showing the link between excess emissions and changes in ozone concentrations, we evaluate
how excess emissions affect health using a direct measure, elderly mortality. We estimate the rela-
tionship between mortality rate in a given county i in each month m and year y and within-county
monthly releases of all ozone precursor pollutants from excess emissions using the following fixed-
effects model:

Mortality Rateimy = β
VOC (VOC EE)imy +β

NOx (NOx)imy (3)

+β
CO (CO EE)imy +δiy +µm + εimy

Here our dependent variable is mean county-level monthly mortality rate per one-hundred-
thousand elderly residents. As robustness checks, we also consider models using inverse hyper-
bolic sine transformation and natural-log transformed mortality rate.

We include month (µm) fixed-effects to account for seasonality and mortality trends that may
be common to all elderly Texans. We cluster our standard errors at the county-level and weight our
regressions by the elderly population of interest in each county-year. In our preferred specifica-
tion, we include county-by-year fixed-effects, δiy. This controls for time-invariant (over the period
of one year) unobservable county-level variables, unobservable shocks common to all counties
within Texas in a given year, and all county-year specific unobservables. As a robustness check,
we consider two additional specifications without county-by-year fixed-effects, whose results are
presented in Figure A6 of the Appendix. We examine one specification where we use only county,
year and month fixed effects and another where we use county-year specific control variables
that cannot be included along with the county-by-year fixed-effects. Control variables include the
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unemployment rate, median income, % non-white, % Hispanic, % elderly, % in poverty, manufac-
turing employment, and tons of lead emitted from sources reporting in the TRI.

3.3 Addressing threats to identification

In our preferred specifications for air quality, we identify the treatment effect using a comparison
of the dependent variable at each monitor or county to itself within a given year. Both the monitor-
and county-level are the most granular geographic units available for each respective data series
(i.e. in the air quality and mortality models). The “unit”-by-year fixed-effects help guard against
the possibility that our pollution (mortality) estimates are spurious estimates derived from differen-
tial trends specific to certain monitors (counties). For example, consider a plant’s decision to adopt
a pollution control device, such as a NOx Flue Gas Recirculation (FGR) device, where the NOx

releases are measured at the stack, behind the FGR device. Such a device would result in lower
routine NOx emissions and could also result in lower excess emissions so long as those emissions
are released from the stack with the new technology. An estimate without the monitor-by-year
(county-by-year) fixed-effects may incorrectly attribute reductions in ambient ozone concentra-
tions (mortality) to the reduced amount of NOx related excess emissions. This estimate could
overstate the true treatment effect because both reductions were in reality attributable to the new
pollution control device. Ideally, the estimated effect should account for the changes in routine
emissions, which also contribute to reduced pollution (mortality). We include monitor-by-year
(county-by-year) fixed-effects for exactly this reason. This ensures that our treatment effect esti-
mates are based upon within monitor-year (county-year) variation and reduces the likelihood that
monitor (county) specific trends, nearby policy changes, or other similar unobservables are driving
our findings.

A primary concern with our analyses is that there may be unaccounted for events that simulta-
neously cause air-pollution, increased mortality, and excess emissions events. That is, it is possible
that an event may trigger both increased air pollution and mortality as well as increased excess
emissions events. Hurricanes are a salient example. Hurricanes may increase non-excess emis-
sions related air pollution due to a rise in automotive traffic related to evacuations. In addition,
they are linked to increased mortality (Deryugina and Molitor Forthcoming) as well as increased
excess emissions events (Zirogiannis, Hollingsworth and Konisky 2018). Hurricanes also can
cause equipment failure or damage that can lead to excess emissions due to malfunctions. To mit-
igate this potential, before a hurricane makes landfall most industrial facilities in the affected area
shutdown their operations to avoid storm and flooding related accidents. Once the hurricane has
passed, facilities go through a period of start-up which often results in emissions that are above
a facility’s permitted levels. Thus, hurricanes are associated with an increased incidence of ex-
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cess emissions events. Zirogiannis, Hollingsworth and Konisky (2018) found that Hurricanes were
related to 1.5% of all excess emissions events in Texas from 2002 to 2017.

To address this potential threat to our identification, our preferred specification drops all months
that could potentially be affected by a major hurricane. The is a conservative choice since not all
facilities in Texas will shut down if a hurricane hits the Gulf of Mexico. It is more likely that
shutdowns and start-ups will affect only facilities in the landfall zone. However, we make the
choice of removing all facilities in the hurricane months in the absence of a systematic way to
detect which facilities close and which remain in operation.19

Recall from Section 2 that the excess emissions data can be constructed in two ways: 1) using a
“full dataset” that includes all reported emissions events regardless of whether or not the emissions
exceed the permitted threshold; and 2) using a “censored dataset” that includes only the portion
of reported emissions that are above the permitted threshold. These two constructions, combined
with the inclusion or exclusion of hurricane months, result in four datasets. Our preferred and most
conservative dataset is the censored one that excludes hurricane months. The censored dataset
excludes any initially reported excess emissions events that are later determined not to be excess
emissions events since the emission release did not exceeded permitted levels. The exclusion of
hurricane months minimizes the likelihood of omitted variable bias related to hurricanes. Results
presented in Section 4 use only our preferred dataset. We present results from all other datasets in
the Appendix.

We next consider an instrumental variable specification that addresses remaining endogeneity
concerns.

3.4 Instrumental variables

Thus far we have presented two separate regression approaches on how excess emissions affect
ozone concentrations and how excess emissions affect elderly mortality. Next we directly link
these two specifications in a two stage least squares framework with monthly excess emissions of
precursor pollutants to ozone serving as instrumental variables for monthly ozone concentrations.
The instrumental variables approach has several advantages. First it addresses the possibility of
measurement error in monthly ozone levels. As has been demonstrated in the literature, an in-
strumental variable specification can help address issues related to measurement error (Aizer et al.
2018, Deryugina et al. 2019, Keiser 2019). Second, it accounts for the possibility that an omit-
ted variable related to increases in ozone as well as increases in elderly mortality is driving our

19The following months are considered major hurricane months and are excluded whenever noted: July 2003
(Claudette), September 2005 (Rita), July 2008 (Dolly), September 2007 (Humberto), and September 2008 (Ike).
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results.20 Finally, it addresses the different time scales (daily excess emissions events in the spec-
ification of section 3.1 and monthly excess emissions events in the specification in section 3.2)
by using county-month measures of ozone in both the first stage (the pollution concentrations)
and second stage (mortality) regressions, discussed below. This approach directly traces out how
excess emission induced ozone affects elderly mortality. We estimate the following two equations:

Ozoneimy = β
VOC (VOC EE)imy +β

NOx (NOx)imy +β
CO (CO EE)imy (4)

+ωXimy +δiy +µm + εimy

Mortality rateimy = β Ôzoneimy +ωXimy +δiy +µm + εimy (5)

Since the pollution and mortality data are at different temporal and geographic levels we ag-
gregate the pollution data to the lowest common denominator, the county-month. A simple way to
perform this aggregation would be to take the mean ozone reading in each county month. How-
ever, it is possible that excess emissions detectably affect daily average ozone levels in the few
days following a release, but have no detectable effect on monthly averages. That is, even a large
increase in a given day’s ozone levels may have a limited affect on the monthly average. Therefore
we conduct our analysis using multiple county-month ozone measures constructed from the daily
data: the mean, the median, the 75th percentile, the 90th percentile, the 95th percentile, the 99th

percentile, and the maximum daily reading.
For the first stage, we expect that the specifications using larger percentiles will be more pre-

cisely estimated and greater in magnitude for the first stage since fewer days of the month need to
be affected by excess emissions to see changes in larger percentiles. However, we also expect the
larger percentile specifications to have smaller and less detectable mortality effects in our second
stage analysis because it may be less damaging to have a few poor days of air quality relative to
worse air quality on more than half the days of the month. It is due to this trade-off that we cannot
a priori determine which is our preferred measure of ozone and we choose to report results from a
variety of ozone measures.

In all our two-stage least squares regressions we weight by the population of the subgroup
under consideration and control for monthly average weather (Ximy), county-by-year fixed effects

20In our preferred specification, we drop hurricane months due to the concern that these may be associated with
both excess emissions and elderly mortality. It is worthwhile to note that work by (Zou and Wu 2005) finds that ozone
levels actually decrease due to hurricane activity. While this would bias us away from finding an effect, we still prefer
to drop hurricane months since these months may see both increases in excess emissions as well as elderly mortality
due to hurricane related effects, which would be a violation of our exclusion restriction.
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(δiy), and month fixed effects (µm). Standard errors (εimy) are clustered at the county level and
corrected to account for the chained nature of the estimation procedure using the standard two
stage least squares corrections.

A limitation of this approach is that we are limited to the set of counties that include ozone
monitors. This is not a limitation in the unlinked specification (discussed in Section 3.2) that di-
rectly compares excess emissions and elderly mortality since we have data on these variables for
every county-month in Texas over the time period studied. Luckily, ozone monitors are placed in
the most populated counties, so despite having fewer observations, counties with monitors cover
almost 70% of the elderly population. Moreover, since our regressions are weighted by elderly
population it is unlikely that our treatment effect estimates are being driven by the smallest coun-
ties.

4 Results and discussion

4.1 Air Pollution

Our first set of results establishes the link between excess emissions and ozone concentrations. Our
dependent variable is the daily average ozone concentration at EPA pollution enforcement monitors
within Texas from 2002 to the first quarter of 2017. We evaluate Equation 1 for three different
pollutants of interest, estimating the impact of CO, NOx and VOC excess emissions on ozone
concentrations (Muller and Mendelsohn 2012b, p. 30). We consider a number of specifications,
distances, datasets, and transformations of the dependent variable. Due to the large number of
results, and for ease of exposition, only the results of our preferred specification are presented in
full in the main text. The remaining results are discussed briefly in the main text and presented in
full in the Appendix.

Table 3 presents the results of our preferred specification and most conservative dataset for a
fifteen-mile distance bin where the dependent variable is average daily ozone concentration in parts
per billion (ppb).21 Table 3 shows results of our preferred specification that uses monitor-by-year
fixed effects and week fixed effects. A 100 ton increase in VOC, CO and NOx excess emissions
within fifteen miles of a given monitor is associated with a 3.7 ppb, 6.6 ppb, and 66 ppb increase
in measured ozone concentrations, respectively. As a reminder the NAAQS threshold for ozone is
70ppb. Table A4 in the Appendix, provides evidence that our results are robust to different model
specifications.

21We choose 15 miles since this provides the nearest approximation to the size of the median Texas county while
still maintaining our five mile increment. The median Texas county has 910 square miles of land area. A radius around
the monitor of 15 miles produces an area of 707 square miles. Our results are robust to other distance thresholds and
are reported in the Appendix.
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We examine the effect of the distance between the monitor and the source of the excess emis-
sions release in two alternative ways: 1) by drawing incrementally larger distance bins around a
monitor (0-5 miles, 0-10 miles. 0-15 miles, etc.) and summing all excess emissions events within
that bin and 2) by considering mutually exclusive bins of the same width (0-5 miles, 5-10 miles,
10-15 miles, etc.). These two approaches allow us to examine the importance of distance between
excess emissions and air quality measured at nearby monitors.

When using the overlapping bins, as we increase the distance from each monitor, the land area
considered grows quadratically. Thus both the total number and total amount of pollution releases
from excess emissions events within 25 miles of a monitor may be much larger than the totals
within 5 miles. The increased count and total amount of daily emission events for the largest dis-
tance specifications likely contribute to improved statistical power by reducing noise (i.e., shrink-
ing the standard error of the regression coefficient relative to the smaller distance specifications).
This is also true, but for a lesser extent, when using the mutually exclusive bins.22 Thus, while
we expect that pollution releases closer to a monitor should lead to larger increases in measured
ozone concentrations than farther away releases, we also expect the farthest away bins to be more
precisely estimated.

We visually report the results of our preferred specification across these two sets of distance
bins in Figure 2. The left panel of Figure 2 uses mutually exclusive distance bins, while the
right panel uses overlapping bins. The dependent variable is the mean daily ozone concentration
(in ppb) and 95% confidence intervals are displayed by the brackets behind each marker. Both
sets of results are consistent with the fifteen-mile distance models presented in Table 3 showing
that excess emissions of NOx, VOCs and CO cause increases in nearby ozone concentrations.
Consistent with our prediction, the estimated treatment effect becomes more precisely estimated
as the distance bins grow larger and this precision increases the most for the overlapping distance
bin specifications.

4.1.1 Event Study

Figure 3 displays our event study estimates for ozone concentrations.23 There is a clear and large
increase in ozone concentrations on the day of and day following a large excess emissions event.
The effect dissipates by the third day, becoming indistinguishable from zero. Importantly, events
in the future do not affect pollution concentrations in the past. These flat pre-trends suggest that
our identification assumption is likely to be met. That is, conditional on our fixed-effects and

22The distance in the 15-20 bin is larger (550 sq. mi.) than the 10-15 bin (392 sq. mi.).
23We also explored the effect of excess emissions on particulate matter concentrations. We found a similar pattern

of results indicating that excess emissions are associated with increases in particulate matter concentrations. However,
event study estimates did not show clear and flat pre-trends. These results are available upon request.

18



weather controls, in the absence of an excess emissions event there would likely be no observable
difference between pollution concentrations at monitors near excess emission releasing facilities
compared to concentrations at monitors far away from releasing facilities.

4.1.2 Other robustness checks

Figures A2 and A3 in the Appendix conduct a series of robustness checks using different datasets
and specifications. The estimated relationship between excess emissions and ozone formation is
remarkably stable, indicating that our results are not driven by routine emissions events that are
first incorrectly classified as excess emissions events, by hurricanes, or by specification choices.
Further evidence supporting the validity of our specification choice is provided in Figure A4, where
we show that the release of excess emissions of pollutants that are not precursors of ozone are not
related to nearby ozone formation.

4.2 Mortality

While the estimated relationship between excess emissions and ozone concentration is statisti-
cally significant, this does not immediately imply that the relationship is economically meaningful.
Since the vast majority of events are small, it could be the case that even though excess emissions
events increase nearby ozone concentration, the average event may not be large enough to affect
nearby population health in a detectable manner. In this section we demonstrate the link between
excess emissions releases and mortality. We then quantify, in Section 4.4, the magnitude of this
effect by both using our empirical results to estimate the number of additional elderly deaths that
are due to excess emissions and by using an integrated assessment model to provide an estimate of
the total damages from excess emissions.

To establish the link between excess emissions and increased elderly mortality, we evaluate
Equation 3 for the all-cause mortality rate for each elderly age-group. Here our data are at the
county-month-year level, which represents the most granular level that the mortality data are re-
ported. The independent variables of interest are the tons of excess emissions released in each
county-month-year.

These results are presented in Figure 4 and show that excess emissions of VOCs and CO in-
crease elderly mortality.24 The effects are driven by those aged 75 and older, with no detectable
effects for those aged 65 to 74. A 100 ton increase in VOC excess emissions causes 5.4 more
deaths per 100k for those above 85. Similarly, a 100 ton excess CO emissions event would cause

24The exact point estimates and standard errors are presented in Table A7.
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1.8 more deaths per 100k for those aged 75 to 84 and—an imprecisely estimated—4 more deaths
per 100k for those above 85.25

These findings are robust across both the choice of dataset, specification, and transformation
of the dependent variable, which is demonstrated by Figures A5 and A6 in the Appendix. We find
only slight differences in the estimate from the preferred model as we vary the underlying dataset
or specification. Relative to using the untransformed (i.e. mean) dependent variable, when using
the natural log or inverse hyperbolic sine transform our precision increases for the CO coefficient
in the 65+ and 75− 84 age groups. This is likely a reflection of the large number of zero valued
observations in our data.

4.3 Instrumental variables

Results from our instrumental variable analysis are presented in Tables 4 and 5. Table 4 shows our
first stage analyses: the relationship between monthly excess emissions of precursor pollutants to
ozone (VOC, NOx, and CO) and various measures of monthly ozone pollution. We show results
for each age-category considered in the paper (65+, 65-74, 75-84, and 85+). There are differences
in the first stage results across age-categories only because of differences in the population variable
used to weight each county month (we use the population of each respective age-group).

Different columns use different measures of monthly ozone, the first column uses average
monthly ozone, while the second uses median ozone. As we move right, ozone measures are from
progressively larger percentiles of the daily distribution in each month. The greater the percentile,
the smaller the portion of the right tail of the distribution is considered. The most extreme is the
sixth column, which is just the maximum daily average in each month.

Our first stage results show that our instrumental variables are well-powered and work in the
expected direction. All F-statistics are above 28, which is well above the Kleibergen-Paap critical
threshold of 9.08 for 10% bias when three instruments are used. As expected, excess emissions
have the largest and most precisely estimated effects on the right tail of the distribution of daily
ozone levels in each month. Thus the largest and most precise estimates are in the far right columns.
In accordance with our expectations, VOC emissions are particularly effective at creating ozone,
which is demonstrated by the positive and significant coefficient no matter the ozone measure used.

Table 5 presents results from our second stage. As with our first stage results, the columns
index different measures of ozone. Each set of results considers the mortality rate per 100,000
population by different age groups. Each coefficient can be interpreted as the effect of a one unit
change in the measure of ozone associated with that column on the elderly mortality rate of the

25In Appendix Table A6 we examine the effect by cause of death. When using the untransformed mean as the
dependent variable, we find weak evidence that the all-cause mortality results are driven by cardiovascular deaths, but
these coefficients are imprecisely estimated.
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respective age group. For example, a one unit increase in the median daily ozone reading in a
month causes 26.84 (2.3%) more deaths per 100,000 aged 85 and above. Similarly for those aged
75 to 84 a one unit increase in the median ozone causes 7.06 (1.7%) more deaths per 100,000.

The largest effects are for the 85+ group, with smaller effects for the 75-84 year old group, and
no discernible effect for those aged 65 to 74. As expected the largest mortality effects are for the
average and median measures of ozone and the smallest and least precisely estimated are for the
ozone measures that consider more extreme outcomes. This is sensible because the different mea-
sures indicate dramatically different exposures to ozone; raising the median ozone concentration
over an entire month means that the entire right half of the distribution would need to increase,
raising the average could be done by having an increase on every day or very large increases on
just a few days, increasing the largest percentiles need only affect a small number of days, and
altering the maximum daily reading need only affect one day.

Overall we find strong evidence that ozone affects elderly mortality. Those results are more
comparable when presented as elasticities. A 10% change in monthly average ozone increases
elderly mortality by 3.9%. This change is driven by older cohorts, where the same ozone change
induces a 5.2% increase in mortality of those aged above 85. We find similar effects using median
monthly ozone concentrations. In addition to the mean and median, we also show evidence that
highest ozone concentration days of the month are important. We find that a 10% increase in
the 99th percentile or the maximum monthly ozone concentration causes around a 3% increase in
elderly mortality. As with the mean and median results, this is driven by those aged 75 and above.

4.4 Interpretation of results

While we have shown that excess emissions increase both harmful nearby pollution and elderly
mortality, we have yet to quantify the magnitude of the effect. As previously discussed, our empir-
ical estimates report the impact of 100 tons of excess emissions by pollutant. The use of 100 tons
is done for ease of coefficient interpretation, but the average excess emissions event releases far
less than 100 tons of any given pollutant. We show two estimates that better capture the magnitude
of excess emissions damage by accounting for the size and frequency of actual excess emissions
events. Using our mortality estimates, we first predict the number of premature elderly deaths
that excess emissions cause in each year and estimate the associated damages. We then calculate
estimated damages from excess emissions using an integrated assessment model, which quantifies
marginal pollution damages from mortality, morbidity, and other sources.

Our estimates from Section 4.2 indicate that excess emissions increase all-cause elderly mortal-
ity within the same month. Combining the estimated coefficients with data on the actual frequency
and size of excess emissions by pollutant allows us to predict the number of premature deaths
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caused by excess emissions in each year. Excess emissions of VOCs, NOx, and CO are associ-
ated with around 35 additional elderly deaths per year in Texas. To compare this number with
the results from an existing integrated assessment model (specifically the Air Pollution Emissions
Experiments and Policy (APEEP) model developed by Muller and Mendelsohn (2012a)), we must
determine a dollar value for these premature deaths. To mitigate this issue, we consider the mone-
tary value of life years lost. The average age of an adult aged 65 and above is 74.10 and conditional
on reaching this age, life expectancy is 87 (Murphy et al. 2017). Thus each premature death of an
adult aged 65 and older results in an average decrease of 12.9 years of life. If each life year lost is
valued at $137,258.10 in 2019 $ (Cutler 2004), each premature elderly death causes $1,770,629.49
in damages. However, we need to adjust this figure to account for the possibility of “harvesting”
(or “mortality displacement”), which denotes the likelihood that premature elderly deaths due to
excess emissions events might have occurred (at a somewhat latter time) even in the absence of
excess emissions. Using estimates derived from Deryugina et al. (2019) we adjust the value of
each premature elderly death by 31% which brings our estimated value down to $548,895.14.26

Thus in an average year in Texas the 35 additional elderly deaths caused by excess emissions are
valued at over $19.3 million.27

We use a similar approach to estimate damages using results from our instrumental variables
specifications. Using the point estimates from our multiple IV specifications, we find very similar
damage estimates as we do when we use OLS. We estimate that average annual damages are (in
millions) $18.6 when using mean monthly ozone, $13.6 when using using 75th percentile monthly
ozone, $13.8 when using using 90th percentile monthly ozone, $23.8 when using using 95th per-
centile monthly ozone, and $19.8 when using using max monthly ozone.

In addition to damages estimates based on our elderly mortality analysis, we also provide
damage estimates of excess emissions that use the Air Pollution Emissions Experiments and Policy
(APEEP) model (Muller and Mendelsohn 2012a). We do this for two reasons. First, this provides
an order of magnitude check on our elderly mortality derived damage estimates. Second, the
APEEP estimate considers additional (i.e., non-elderly mortality) sources of damage that are not
directly considered in our manuscript.

The APEEP model provides a deterministic and static prediction of the marginal damage per
ton of pollutant emitted in a given county. The main input to the APEEP model is the amount
of pollution released in each source county. The model assumes how releases of pollution affect

26 This 31% deflation of each life year lost is equivalent to assuming each decedent would have live only 31% of
the average remaining life years for their age group.

27 Despite our deflation of the value of each life lost, which accounts for possible harvesting, it is still possible that
our estimated damages are too large. This could occur if the deaths driving the mortality estimates in the 65 and older
group are from the most elderly (85 and above), who have fewer expected remaining life years. The average age of an
individual 85 and above is 88.7 with 5.3 expected years of life remaining. If we were to use this as the basis for our
damage estimate instead, it results in a 41% smaller annual damage estimate
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air quality in downwind receptor counties. A prediction is then provided of how these changes
in air quality will affect morbidity, mortality, reduced agricultural productivity, air visibility, lost
recreational days, and the depreciation of some man-made materials in receptor counties. For each
outcome and in each county, the relationship between changes in a pollutant concentration and
changes in each outcome is assumed, with the exact coefficient taken from prior scientific and
epidemiological studies. Total damages are a monetized aggregate of changes across all outcomes.

The main benefit of using the APEEP model for damage estimates is that it considers a wider
range of outcomes that are affected by pollution. A second advantage is that the APEEP model
considers damages that can occur in counties downwind of the pollution-releasing county. The
biggest drawback of APEEP is the assumed relationship between changes in pollution exposure
and changes in health and non-health outcomes.

Conversely the primary benefit of constructing damage estimates based upon our elderly mor-
tality analysis is better identification; the relationship is not assumed to exist, but instead is esti-
mated using a quasi-experimental research design. However, a clear shortcoming of the elderly
mortality only approach is the narrow focus; it does not account for other consequences of in-
creased pollution and does not consider mortality that may occur in counties beyond the county
that is the source of the pollution.

We expect that APEEP based damage estimates will be somewhat larger than damage estimates
that only consider in-county elderly mortality. However we also expect that the elderly mortality
damage estimates will compose a sizeable fraction of the total damage estimates from APEEP.
Prior work has found that the majority of damages in integrated assessment models like APEEP
come from changes in mortality (Environmental Protection Agency 1999a) and that for a given
increase in pollution the elderly are the most likely age group to see increased mortality (Gouveia
and Fletcher 2000).

It should also be noted that APEEP damages do not account for harvesting. APEEP uses the
full value of statistical life in estimating premature mortality damages; this does not take into con-
sideration the health status or age of the decedent. Because of this, uncorrected APEEP damages
estimates will be too large as they will overstate life years lost due to pollution. As done with our
elderly mortality based damage estimates, we correct for this overstatement by applying a 31%
deflator based on Deryugina et al. (2019). It is important to note that this deflator over-corrects for
the overstated life-years lost. This is the case because there is no evidence that we are aware of that
shows that damages from the other outcomes (recreation days, agricultural yields, etc) included
in the APEEP estimates are over-stated. Thus this correction is quite conservative as it biases the
APEEP damage estimates towards zero.

Using the harvesting corrected APEEP model we find that damages are estimated to be $74
million per year and using our elderly mortality induced excess emissions results we find that
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damages are $19.3 million per year. Figure 5 shows all our damage estimates by year. The solid
grey line represents harvesting adjusted APEEP damage estimates. The solid black line represents
damages from 65+ premature mortality from excess emissions using our OLS estimates. The white
dashed line represents damage estimates based on IV specifications that use mean monthly ozone
as an instrumental variable. For clarity, we do not present specific damage estimates based on our
other IV estimates since there is substantial overlap. However, these results are quite similar to the
mean monthly ozone based results and we present the range of these estimates for any given year
using the grey shaded area.28

5 Conclusion

This study contributes to a growing literature in economics that leverages large pollution shocks to
understand environmental, health, labor, and other impacts (e.g., Ransom and Pope III 1995, Hanna
and Oliva 2015, Currie et al. 2015, Lavaine and Neidell 2017, Muzhe and Shin-Yi 2018). Here, we
clearly demonstrate that excess emissions in Texas are associated with both impaired air quality
and premature elderly mortality. These findings are robust across a number of different model
specifications, including models that we believe are conservative in their assumptions. According
to our estimates, excess emissions of VOCs and CO alone account for an average of 35 additional
elderly deaths per year in Texas. In addition, monetary damages from mortality, morbidity, and
other sources, attributed to excess emissions reach $74 million (in 2019 $) a year.

Given the magnitude of these estimates, our analysis further shows that excess emissions are an
important category of air pollution releases that deserve broader attention. Unlike temporary pol-
lution shocks associated with plant openings or closures, excess emissions occur regularly and at
currently operating plants. Future work should investigate other important implications, including
the relationship between excess emissions and other well-known adverse health outcomes associ-
ated with poor air quality. Of particular interest should be respiratory morbidity such as asthma,
especially among sensitive populations such as children, as well as low birth weight and infant
mortality. Future analysis should also aim to improve on the temporal resolution of our study.
Although the data on excess emissions available from the state of Texas are measured on a daily

28In previous work Zirogiannis, Hollingsworth and Konisky (2018) estimate that excess emissions cause approxi-
mately $150 million in mortality damages per year in Texas. This number differs from those above for two reasons.
First Zirogiannis, Hollingsworth and Konisky (2018) use the EASUIR integrated assessment model developed by
Heo (2015) to estimate annual mortality damages rather than APEEP or an empirical approach like the one in this
manuscript. EASUIR differs from APEEP in that it does not estimate damages from morbidity, agriculture, recreation,
and depreciation of man made goods. Second Zirogiannis, Hollingsworth and Konisky (2018) do not adjust the EA-
SUIR estimates to account for harvesting using the correction based on Deryugina et al. (2019). After applying the
simple 31% deflator to the $150 million estimate from Zirogiannis, Hollingsworth and Konisky (2018), the damage
estimate becomes $46.5 million, which is comparable to those presented in this text.
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level, mortality data from the Center for Disease Control and Prevention are monthly. This tem-
poral mismatch may obscure the effects of emissions on health outcomes, which highlights the
potential dividends of employing daily or weekly health outcomes to better identify adverse health
impacts.

Further research into the incidence and effects of excess emissions is critical given the ongoing
policy uncertainty around these emissions. Although the EPA has unequivocally stated that excess
emissions are violations of the Clean Air Act, as a matter of policy the agency has largely chosen to
neglect them. For this reason, excess emissions historically have been under-regulated. Only since
2015 did the EPA begin to insist that state environmental agencies revise the policies encoded in
their SIPs. Over the last few years, the EPA has demonstrated a shift towards a deregulatory agenda
on excess emissions, predicated on an interpretation of the Clean Air Act’s core principle of co-
operative federalism, according to which states should have latitude in how they meet federal air
quality rules. This deregulatory agenda, is certain to create controversy, and likely reignite a legal
response from environmental advocacy organizations. In fact, in January 2021, the Biden Admin-
istration, announced that it would re-examine the 2020 EPA memorandum that allows affirmative
defense provisions and automatic exemptions in SIPs. Further research on excess emissions can
inform this debate by providing a more robust explanation of the implications of any decision to
change the relevant regulatory framework.
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Table 1: Emissions event by event type (scheduled vs. unplanned) and report type (initial vs. final)
in the censored dataset

Event type Initial Report Final Report Total Share of total

Scheduled Shutdown 128 917 1,045 0.02
Scheduled Startup 161 1,663 1,824 0.04
Scheduled Maintenance 424 4,520 4,944 0.11
Emissions Event 3,963 33,450 37,413 0.83
Total 4,676 40,550 45,231

Note: In this table, emissions events refer to unplanned start-up, shutdown or mal-
function events. Initial reports become de facto final reports when no final report is
submitted within two weeks of the ending date of an event.
Source: TCEQ Air Emissions and Maintenance Events (AEME) dataset.
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Figure 1: Number of facilities reporting to the TCEQ (left vertical axis) and number of excess
emissions events (right vertical axis) by year in the censored dataset

Source: TCEQ Air Emissions and Maintenance Events (AEME) dataset.
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Table 2: Summary statistics for data used in air pollution and mortality specifications

Mean S.D. Min. Max. N Unique N.

Pollution readings
O3, ppb 29.13 12.01 0.00 97.50 406314 86

Weather data
Air temperature, C 19.56 7.97 –18.93 35.50 516556 212
Precipitable water, kg/m2 25.96 13.41 0.03 71.35 516556 212
Surface pressure, kPa 98.65 5.38 81.93 104.60 516556 212
Relative humidity, % 69.82 19.51 0.00 100.00 516556 212
Wind speed, m/s 4.59 2.20 0.00 16.25 516556 212

Excess Emissions, daily
VOC ≤ 15mi, tons 0.39 5.52 0.00 386.94 516556 212
NH3 ≤ 15mi, tons 0.00 0.04 0.00 6.90 516556 212
SO2 ≤ 15mi, tons 0.22 4.21 0.00 558.09 516556 212
NOx ≤ 15mi, tons 0.03 0.42 0.00 33.77 516556 212
CO ≤ 15mi, tons 0.22 4.42 0.00 462.06 516556 212
PM ≤ 15mi, tons 0.01 0.21 0.00 35.00 516556 212

Mortality data, monthly
All deaths per 100k

65+ 407.57 238.29 0.00 12036.42 46482 254
65-74 182.34 195.39 0.00 12500.00 45798 251
75-84 440.53 388.94 0.00 25000.00 45921 252
85+ 1276.69 1253.51 0.00 100000.00 45801 250

Population, 1k
65+ 9.85 29.91 0.00 453.17 46482 254
65-74 5.90 18.30 0.00 297.10 46482 254
75-84 3.26 9.53 0.00 126.42 46482 254
85+ 1.20 3.55 0.00 50.46 46482 254

Source: Daily pollution data are provided by the Environmental Pollution Agency’s pre-generated daily files. Daily
weather data are extracted from the National Oceanic and Atmospheric Administration’s NCEP-NCAR Reanalysis 1
model. Excess emissions data are from the censored dataset and are calculated by the authors using data provided by
the Texas Commission on Environmental Quality. Mortality micro-data come from the Centers for Disease Control
and Prevention Multiple Cause of Death (MCOD) files for 2002-2017. Population data come from the Surveillance,
Epidemiology, and End Results (SEER) program, which is supported by the National Cancer Institute. Unique N,
refers to the unique number of cross-sectional units observed in our data, while N refers to the total number of ob-
servations.
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Table 3: The relationship between excess emissions and nearby daily ozone concentrations.

VOC CO NOx

Excess emissions ≤ 15mi, 100 tons 3.679*** 6.596*** 66.202***
(0.730) (0.998) (4.979)

Monitor-by-year fixed-effects Yes Yes Yes
Week-of-year fixed-effects Yes Yes Yes
Hurricane months included No No No
Censored dataset Yes Yes Yes
Controls Yes Yes Yes
Observations 329573 306304 306958

Note: Robust standard errors clustered at the monitor-level are reported in
parentheses. The model includes monitor-by-year fixed effects, week fixed ef-
fects and weather variables (temperature, pressure, relative humidity, percip-
itable water and wind speed). The dataset used in this analysis are from the most
conservative dataset that only only uses the emissions portion of excess emis-
sions events above the permitted level (i.e. the censored dataset) and does not
include hurricane months. The dependent variable is the mean of daily ozone
concentrations measured in ppb. Each column represents a separate regression
where the independent variable of interest differs.
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Figure 2: The relationship between tons of excess emissions and average daily ozone concentra-
tions across distance.

Effect on mean daily ozone concentration (ppb)

A. Mutually exclusive distance bins B. Overlapping distance bins

Note: This figure presents two sets of results that use the untransformed mean of daily ozone concentration as the de-
pendent variable. Both sets of results (both left and right panel) use our preferred specification specification (monitor-
by-year fixed effects, week fixed effects and weather variables included). Brackets represent 95% confidence intervals,
calculated from robust standard errors clustered at the monitor-level. The dataset used in both sets of results considers
the censored portion of excess emissions and excludes hurricane months. The left panel considers mutually exclusive
distance bins of 0-5 miles, 5-10 miles, etc. The right panel considers overlapping distance bins of 0-5 miles, 0-10
miles, etc.
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Figure 3: The effect of excess emissions on ozone concentrations in event time.

Note: Numbers index days since most recent large excess emissions event. A large excess
emissions event is at the 95th percentile by total tons of pollutants emitted. Point estimates are
depicted by blue squares and come from a single regression that controls for daily weather,
monitor-by-year fixed effects, and week fixed effects. 95% confidence intervals are displayed
by gray area and are calculated using robust standard errors clustered at the monitor level.
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Figure 4: The relationship between excess emissions and all-cause elderly mortality.

Effect on all-cause elderly mortality rate
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Note: Brackets represent 95% confidence intervals, calculated from ro-
bust standard errors clustered at the county-level, using our preferred
specification (county-by-year and month fixed effects). Results are
based on our most conservative dataset that only uses the emissions
portion of events above the permitted level (i.e. the censored dataset)
and does not include hurricane months.
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Table 4: First stage results demonstrating the relationship between monthly excess emissions and
ozone pollution using different measures of pollution at the county-month level.

(1) (2) (3) (4) (5) (6)
Mean Median 75th pct 95th pct 99th pct Max

Ozone measure, weighted by pop 65 +

Excess VOC, 100 tons 0.27** 0.23** 0.31*** 0.40*** 0.47*** 0.46***
(0.10) (0.09) (0.11) (0.10) (0.12) (0.13)

Excess NOx, 100 tons 2.22 0.97 3.99 4.89** 3.98* 4.55***
(2.60) (2.41) (2.67) (2.13) (2.07) (1.50)

Excess CO, 100 tons –0.01 0.07 –0.10** –0.14 0.32*** 0.09
(0.07) (0.07) (0.05) (0.08) (0.05) (0.09)

Mean ozone measure 29.11 28.40 35.20 44.73 49.86 51.43
KP F-Stat 11.25 16.84 3.89 15.30 27.32 75.74

Ozone measure, weighted by pop 65-74

Excess VOC, 100 tons 0.26** 0.23** 0.30*** 0.39*** 0.46*** 0.45***
(0.10) (0.09) (0.11) (0.10) (0.11) (0.12)

Excess NOx, 100 tons 2.51 1.24 4.35 5.18** 4.25** 4.59***
(2.61) (2.43) (2.61) (2.09) (2.06) (1.47)

Excess CO, 100 tons –0.03 0.06 –0.12** –0.15* 0.31*** 0.07
(0.07) (0.07) (0.05) (0.08) (0.05) (0.10)

Mean ozone measure 29.13 28.44 35.22 44.72 49.83 51.39
KP F-Stat 11.51 16.55 4.33 17.30 28.04 62.81

Ozone measure, weighted by pop 75-84

Excess VOC, 100 tons 0.27** 0.23** 0.31** 0.42*** 0.50*** 0.48***
(0.13) (0.11) (0.13) (0.13) (0.14) (0.15)

Excess NOx, 100 tons 2.33 1.07 4.04 4.87** 3.95* 4.36***
(2.53) (2.31) (2.62) (2.12) (2.09) (1.56)

Excess CO, 100 tons –0.02 0.07 –0.11** –0.14 0.30*** 0.07
(0.07) (0.07) (0.05) (0.08) (0.05) (0.10)

Mean ozone measure 29.11 28.39 35.22 44.80 49.98 51.55
KP F-Stat 6.56 10.37 3.30 8.90 18.77 55.97

Ozone measure, weighted by pop 85+

Excess VOC, 100 tons 0.24** 0.21** 0.28** 0.36*** 0.43*** 0.42***
(0.12) (0.09) (0.12) (0.11) (0.12) (0.13)

Excess NOx, 100 tons 2.33 1.09 4.06 5.04** 4.18** 4.83***
(2.55) (2.35) (2.66) (2.07) (1.99) (1.30)

Excess CO, 100 tons 0.00 0.09 –0.09 –0.12 0.33*** 0.11
(0.09) (0.09) (0.06) (0.10) (0.05) (0.13)

Mean ozone measure 29.16 28.46 35.25 44.73 49.85 51.36
KP F-Stat 14.23 18.53 3.35 17.01 32.35 81.00

KP F-Stat Critical Value 9.08 9.08 9.08 9.08 9.08 9.08
Observations 5947 5947 5947 5947 5947 5947
Weather Controls Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
County-by-Year FE Yes Yes Yes Yes Yes Yes
Clustered Standard Errors County County County County County County

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the county level in
parentheses. Each regression is weighted by the county population of the relevant subgroup.
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Table 5: Second stage results demonstrating the relationship between ozone and elderly mortality
using different measures of pollution at the county-month level.

(1) (2) (3) (4) (5) (6)
Mean Median 75th pct 95th pct 99th pct Max

All cause mortality, 65+

Ôzone 4.41* 6.01*** 2.87 2.30 2.39** 2.39*
(2.26) (1.78) (2.13) (1.61) (1.14) (1.31)

Mean death rate 378.80 378.80 378.80 378.80 378.80 378.80
Mean ozone measure 29.11 28.40 35.20 44.73 49.86 51.43
KP F-Stat 11.25 16.84 3.89 15.30 27.32 75.74
% Texas pop in sample 67.32 67.32 67.32 67.32 67.32 67.32

All cause mortality, 65-74

Ôzone 0.08 0.28 –0.09 –0.04 –0.11 –0.04
(0.86) (0.84) (0.73) (0.58) (0.43) (0.50)

Mean death rate 161.43 161.43 161.43 161.43 161.43 161.43
Mean ozone measure 29.13 28.44 35.22 44.72 49.83 51.39
KP F-Stat 11.51 16.55 4.33 17.30 28.04 62.81
% Texas pop in sample 68.42 68.42 68.42 68.42 68.42 68.42

All cause mortality, 75-84

Ôzone 4.73 7.06** 2.86 2.29 3.08** 2.82*
(3.31) (2.73) (2.76) (2.00) (1.37) (1.60)

Mean death rate 415.21 415.21 415.21 415.21 415.21 415.21
Mean ozone measure 29.11 28.39 35.22 44.80 49.98 51.55
KP F-Stat 6.56 10.37 3.30 8.90 18.77 55.97
% Texas pop in sample 66.18 66.18 66.18 66.18 66.18 66.18

All cause mortality, 85+

Ôzone 20.70** 26.84*** 13.87 11.04 10.26* 10.73
(9.99) (8.59) (8.91) (6.92) (5.56) (6.52)

Mean death rate 1163.45 1163.45 1163.45 1163.45 1163.45 1163.45
Mean ozone measure 29.16 28.46 35.25 44.73 49.85 51.36
KP F-Stat 14.23 18.53 3.35 17.01 32.35 81.00
% Texas pop in sample 66.96 66.96 66.96 66.96 66.96 66.96

KP F-Stat Critical Value 9.08 9.08 9.08 9.08 9.08 9.08
Observations 5947 5947 5947 5947 5947 5947
Weather Controls Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
County-by-Year FE Yes Yes Yes Yes Yes Yes
Clustered Standard Errors County County County County County County

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the county
level in parentheses. Each regression is weighted by the county population of the relevant
subgroup.
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Figure 5: Expected damages from excess emissions

Premature elderly mortality

All sources (Adjusted APEEP)
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Note: Damages are reported in 2019 $. The solid grey line represents harvesting adjusted APEEP
damage estimates (Deryugina et al. 2019). APEEP damage estimates account for mortality, mor-
bidity, and other damages that occur as a result of pollution (Muller and Mendelsohn 2012a). The
solid black line represents damages from 65+ premature mortality from excess emissions using our
OLS estimates described in Section 4.2. The white dashed line represents damage estimates based
on IV specifications that use mean monthly ozone as an instrumental variable. For clarity, we do not
present specific damage estimates based on our other IV estimates since there is substantial overlap.
However, these results are quite similar to the mean monthly ozone based results and we present
the range of these estimates for any given year using the grey shaded area. Average annual damage
estimates are–in millions–$74.7 (adjusted APPEP); $19.3 (elderly mortality, OLS); $18.6 (elderly
mortality, IV using mean monthly ozone); $13.6 (elderly mortality, IV using 75th percentile monthly
ozone); $13.8 (elderly mortality, IV using 95th percentile monthly ozone); $23.8 (elderly mortality,
IV using 99th percentile monthly ozone); and $19.8 (elderly mortality, IV using max monthly ozone).
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Appendix

In order to clarify the way the TCEQ defines emissions during malfunctions as well as scheduled or
unscheduled start-ups, shutdowns or malfunctions, we provide the relevant section from the Texas
Administrative Code (TAC) where each term is explained:

TAC 101.1: Definitions
Emissions Event: Any upset event or unscheduled maintenance, start-up, or shutdown activity,

from a common cause that results in unauthorized emissions of air contaminants from one or more
emissions points at a regulated entity.

Scheduled maintenance, start-up, or shutdown activity: For activities with unauthorized
emissions that are expected to exceed a reportable quantity (RQ), a scheduled maintenance, start-
up, or shutdown activity is an activity that the owner or operator of the regulated entity whether
performing or otherwise affected by the activity, provides prior notice and a final report as required
by §101.211 of this title (relating to Scheduled Maintenance, Start-up, and Shutdown Reporting
and Record keeping Requirements); the notice or final report includes the information required
in §101.211 of this title; and the actual unauthorized emissions from the activity do not exceed
the emissions estimates submitted in the initial notification by more than an RQ. For activities
with unauthorized emissions that are not expected to, and do not, exceed an RQ, a scheduled
maintenance, start-up, or shutdown activity is one that is recorded as required by §101.211 of this
title. Expected excess opacity events as described in §101.201(e) of this title (relating to Emissions
Event Reporting and Record keeping Requirements) resulting from scheduled maintenance, start-
up, or shutdown activities are those that provide prior notice (if required), and are recorded and
reported as required by §101.211 of this title.

Unauthorized emissions: Emissions of any air contaminant except water, nitrogen, ethane,
noble gases, hydrogen, and oxygen that exceed any air emission limitation in a permit, rule, or
order of the commission or as authorized by Texas Health and Safety Code, §382.0518(g).

Unplanned maintenance, start-up, or shutdown activity: For activities with unauthorized
emissions that are expected to exceed a reportable quantity or with excess opacity, an unplanned
maintenance, start-up, or shutdown activity is: (A) a start-up or shutdown that was not part of
normal or routine facility operations, is unpredictable as to timing, and is not the type of event
normally authorized by permit; or (B) a maintenance activity that arises from sudden and unfore-
seeable events beyond the control of the operator that requires the immediate corrective action to
minimize or avoid an upset or malfunction.

Upset event: An unplanned and unavoidable breakdown or excursion of a process or oper-
ation that results in unauthorized emissions. A maintenance, start-up, or shutdown activity that
was reported under §101.211 of this title (relating to Scheduled Maintenance, Start-up, and Shut-

A1



down Reporting and Record keeping Requirements), but had emissions that exceeded the reported
amount by more than a reportable quantity due to an unplanned and unavoidable breakdown or
excursion of a process or operation is an upset event.

Table A1: Emissions event by event type (scheduled vs. unplanned) and report type (initial vs.
final) in the full dataset

Event type Initial Report Final Report Total Share of total

Scheduled Shutdown 160 1,407 1,567 0.03
Scheduled Startup 201 2,593 2,794 0.05
Scheduled Maintenance 510 5,917 6,427 0.12
Emissions Event 4,448 37,094 41,542 0.79
Total 5,319 47,011 52,335

Note: In this table, emissions events refer to unplanned start-up, shutdown or mal-
function events. Initial reports become de facto final reports when no final report is
submitted within two weeks of the ending date of an event.
Source: TCEQ Air Emissions and Maintenance Events (AEME) dataset.

Table A2: Percent of event-observations involving each pollutant that also emit other pollutants

% of events involving X additional pollutants

Pollutant Zero One Two Three Four Five
# of events

involving pollutant

CO 0.021 0.107 0.425 0.324 0.107 0.016 51249
VOC 0.322 0.098 0.278 0.219 0.072 0.011 75603
NOx 0.034 0.095 0.424 0.325 0.106 0.016 51791
SO2 0.109 0.092 0.086 0.495 0.189 0.028 28814
NH3 0.164 0.135 0.247 0.174 0.188 0.092 8778
PM 0.078 0.095 0.074 0.218 0.448 0.087 9264

Note: Column label “Zero” shows the share of excess emissions event observations that release a single pollutant.
For example, out of the 51,249 event-observations of CO releases, 2.1% involve the release of CO only from a given
excess emissions event. Columns labeled “One”, “Two”, “Three”, etc. indicate the share of event-observations that
release one, two , three (etc.) additional pollutants. For example out of the 51,791 event-observations of NOx releases,
only 9.5% involve the release of one additional pollutant (i.e. in addition to NOx)
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Figure A1: Number of facilities reporting to the TCEQ and number of excess emissions events by
year in the full dataset.

Source: TCEQ Air Emissions and Maintenance Events (AEME) dataset.
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County-year variables: For some specifications we include economic, demographic, and other
controls variables at the county-year level. County-level data on the annual unemployment rate and
percent of individuals in poverty come from the Bureau of Labor Statistics’ Local Area Unemploy-
ment Statistics. Annual median income estimates at the county-level come from the U.S. Census
Bureau’s Small Area Income and Poverty Estimates (www.census.gov/did/www/saipe/). De-
mographic data are calculated using the SEER population estimates, which report the number of
individuals by gender, race, and single year of age for each county and year. Finally, data on the
tons of lead emitted in each county and year come from the TRI.

Table A3: Summary statistics for control variables used in specifications without county-by-year
fixed effects

Mean S.D. Min. Max. N

Unemp Rate 0.06 0.02 0.02 0.20 45720
% Non-White 0.09 0.08 0.00 0.43 45720
% of Hispanic Origin 0.32 0.23 0.02 0.97 45720
% Elderly 0.16 0.05 0.05 0.35 45708
Median income, $10k 4.11 1.09 1.72 9.75 45720
% in Poverty 17.66 5.78 4.80 45.70 45720
Lead emitted from TRI sources (tons) 5.58 32.54 0.00 1037.23 46071
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Table A4: The estimated relationship between excess emissions and nearby daily ozone concen-
trations across different model specifications.

Effect on mean daily ozone concentration (ppb)

Baseline + Weather
+ Monitor-
by-year FE

Excess VOC ≤ 15mi, 100 tons 3.561*** 3.537*** 3.679***
(0.933) (0.787) (0.730)

Observations 329573 329573 329573

Excess CO ≤ 15mi, 100 tons 6.853*** 6.709*** 6.596***
(1.079) (0.917) (0.998)

Observations 306307 306307 306304

Excess NOx ≤ 15mi, 100 tons 57.295*** 63.612*** 66.202***
(6.726) (5.708) (4.979)

Observations 306961 306961 306958

Monitor fixed-effects Yes Yes No
Year fixed-effects Yes Yes No
Week fixed-effects Yes Yes Yes
Monitor-by-year fixed-effects No No Yes
Hurricane months included No No No
Censored dataset Yes Yes Yes
County clustered standard errors Yes Yes Yes

Note: Robust standard errors clustered at the monitor-level are reported
in parentheses. The dataset used in these analyses is the most conserva-
tive dataset in that it only uses the emissions portion of excess emissions
events above the permitted level (i.e. the censored dataset) and it does not in-
clude hurricane months. The dependent variable is the untransformed mean
of daily ozone concentrations measured in ppb. Column labeled “Baseline”
shows results from a model that uses monitor, year and week fixed effects.
Column labeled “+Weather” uses the same fixed effects as the “Baseline”
specification, but adds weather variables (temperature, relative humidity, sur-
face pressure, percipitable water and wind speed). The last column show re-
sults from our preferred specification (also presented in Table 3 of the main
manuscript). This specification uses the same set of weather variables men-
tioned above, but with a set of monitor-by-year (instead of monitor and year)
fixed effects.
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Figure A2: The estimated relationship between excess emissions and nearby daily ozone concen-
trations across different datasets and distances.

Effect on mean daily ozone concentration (ppb)

A. Mutually exclusive distance bins B. Overlapping distance bins

Note: This figure presents two sets of results that use the untransformed mean of daily ozone concentration as the
dependent variable. Both sets of results, the left and right panel, use monitor by year fixed effects, week fixed effects
and include weather variables. Brackets represent 95% confidence intervals, calculated from robust standard errors
clustered at the monitor-level. There are four datasets used that vary across both the inclusion/exclusion of hurricane
months and across the use of the full or censored excess emissions data. The full data include all emissions from every
event while the censored data consider only the portion of emissions above the permitted level. Our preferred dataset
and specification use the censored data that do not include hurricane months and use monitor-by-year fixed-effects.
This combination is represented by the solid black diamond. The left panel considers mutually exclusive distance bins
of 0-5 miles, 5-10 miles, etc. The right panel considers overlapping distance bins of 0-5 miles, 0-10 miles, etc.
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Figure A3: The estimated relationship between excess emissions and nearby daily ozone concen-
trations across different distance measures and model specifications.

Effect on mean daily ozone concentration (ppb)

A. Mutually exclusive distance bins B. Overlapping distance bins

Note: This figure presents two sets of results that use the untransformed mean of daily ozone concentration as the
dependent variable. Both sets of results (both left and right panel) use the censored dataset, that excludes hurricane
months. Brackets represent 95% confidence intervals, calculated from robust standard errors clustered at the monitor-
level. The figure presents results from three model specifications. The first specification (labeled “Baseline”, illustrated
by the white diamond), uses monitor, week and year fixed effects. The second specification (labeled “+ daily weather
variables”, illustrated by the grey diamond), adds daily observations on temperature, precipitable water, relative hu-
midity, atmospheric pressure, and wind speed. Our preferred specification (labeled “+ monitor-by-year fixed effects”
illustrated by the black diamond) uses monitor by year as well as week fixed effects, in addition to the daily weather
variables. The left panel considers mutually exclusive distance bins of 0-5 miles, 5-10 miles, etc. The right panel
considers overlapping distance bins of 0-5 miles, 0-10 miles, etc.
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Table A5: Event study coefficients and standard errors from Figure 3

Effect on mean daily ozone concentration (ppb)

(1)
Ozone (ppm)

-6 and less –0.33
(0.28)

-5 –0.37
(0.22)

-4 –0.56*
(0.32)

-3 0.01
(0.27)

-2 –0.09
(0.21)

0 0.68
(0.42)

+1 0.68**
(0.29)

+2 0.38
(0.28)

+3 0.22
(0.27)

+4 –0.21
(0.35)

+5 –0.50
(0.36)

+6 and larger –0.32
(0.26)

Weather controls Yes
Monitor-by-year fixed effects Yes
Week fixed effects Yes
Cluster level Monitor
Observations 406314

Note: Numbers index days since most recent
large excess emissions event. A large event
means that the excess emission event is in the
95th percentile by total tons of pollutants emit-
ted. * p < 0.1, ** p < 0.05, *** p < 0.01.
Robust standard errors clustered at the moni-
tor level in parentheses. All regressions con-
trol for daily weather, monitor by year fixed
effects, and week fixed effects.

A8



Figure A4: Placebo tests of the effect of excess emissions on ozone, for pollutants that are unrelated
to mean daily ozone concentrations

Effect on mean daily ozone concentration (ppb)

-200

0

200

400

 0-5  5-10  10-15  15-20  20-25

NH3

-100
-50

0
50

100

 0-5  5-10  10-15  15-20  20-25

PM

-5

0

5

10

 0-5  5-10  10-15  15-20  20-25

SO2

Note: All regressions use the full specification (monitor by year fixed
effects, week fixed effects and weather variables included). Brackets
represent 95% confidence intervals, calculated from robust standard
errors clustered at the monitor-level. All regressions use the censored
dataset that drops hurricane months. The distances are mutually exclu-
sive distance bins of 0-5 miles, 5-10 miles, etc.
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Figure A5: The estimated relationship between excess emissions and all-cause mortality rate using
different datasets and transforms of the dependent variable.

Effect on death rate transformed using:

A. Natural log, ln(x + 1) B. Inverse hyperbolic sine, asinh(x)

Note: Brackets represent 95% confidence intervals, calculated from robust standard errors clustered at the county-
level. All specifications in this figure represent our preferred model including county-by-year fixed-effects, and month
fixed-effects. The shape and color of the marker reflect the dataset used. There are four datasets used that vary across
both the inclusion/exclusion of hurricane months and across the use of the full or censored excess emissions data. The
full data include all emissions from every event while the censored data consider only the portion of emissions above
the permitted level. Our preferred dataset, represented by the black diamond, uses the censored data and does not
include hurricane months. The dependent variable is the all-cause mortality per 100k. The left panel uses the natural
log of the death rate plus one, while the right panel uses the inverse hyperbolic sine of death rate.
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Figure A6: The estimated relationship between excess emissions and all-cause mortality rate across
different specifications and transforms of the dependent variable.

Effect on death rate per 100,000:

A. Untransformed mean
B. Inverse hyperbolic sine of mean death rate,
asinh(x)

Note: Brackets represent 95% confidence intervals, calculated from robust standard errors clustered at the county-level.
All specifications in this figure represent our preferred dataset which includes only the portion of excess emissions
above the permitted threshold (censored data) and excludes hurricane months. The shading of the marker reflects the
specification used. The hollow shade represents the baseline specification that only includes county, year, and month
fixed-effects. The midshade represents a specification that adds annual county-specific controls to the baseline, which
include the unemployment rate, median income, % non-white, % Hispanic origin, % elderly, % in poverty, and tons
of lead emitted from TRI sources. The darkest shade uses county-by-year and month fixed-effects. The left panel uses
the untransformed mean, while the right panel uses the inverse hyperbolic sine of mean death rate.
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Figure A7: Mortality increase from 1 ton of excess emissions by pollutant and age group.

Effect on death rate per 100,000

Note: Coefficients for each respective age group come
from separate regressions. In each regression, the de-
pendent variable is the death rate per 100,000 popula-
tion of the age group. The independent variable differs
by panel and is the tons of pollutant released from ex-
cess emissions events in a given county-month. Brack-
ets indicate 95% confidence intervals, which are cal-
culated using standard errors that are clustered at the
county level. Each regression is weighted by the pop-
ulation of the sub group of interest. All regressions in-
clude county by year fixed effects, month fixed effects,
and control for monthly weather variables.
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Table A6: Excess emissions and specific causes of death.

65+ 65-74 75-84 85+
Cardiovascular Respiratory Cardiovascular Respiratory Cardiovascular Respiratory Cardiovascular Respiratory

Excess VOC, 100 tons 0.584 0.245 0.092 0.089 0.841** 0.364 2.024 0.279
(0.397) (0.166) (0.273) (0.134) (0.330) (0.255) (1.521) (0.963)

Excess NOx, 100 tons –1.883 –4.979*** 0.580 –2.461 1.242 –6.122 –24.612 –11.659
(2.611) (1.694) (2.037) (1.521) (4.871) (3.977) (22.275) (7.575)

Excess CO, 100 tons 0.189 0.015 –0.588* 0.025 1.346 0.173 0.844 –0.205
(0.567) (0.151) (0.319) (0.141) (0.824) (0.337) (1.591) (0.997)

Mean monthly death rate per 100k 151.07 49.46 56.49 22.51 155.38 57.70 545.31 139.33

County-by-year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes
Month fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes
Hurricane months included No No No No No No No No
Censored dataset Yes Yes Yes Yes Yes Yes Yes Yes
County clustered standard errors Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2 0.37 0.20 0.14 0.10 0.19 0.09 0.20 0.08
Observations 45069 45069 44549 44549 44668 44668 44553 44553

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the county-level are reported in parentheses. Each regression is weighted by the
county population of the relevant subgroup.

Table A7: Excess emissions and all-cause elderly mortality by age group

Effect on death rate per 100,000

65+ 65-74 75-84 85+

Excess VOC, 100 tons 1.156* 0.041 1.202 5.401***
(0.613) (0.195) (0.973) (1.970)

Excess NOx, 100 tons –2.025 –2.083 3.038 –14.885
(5.129) (2.964) (9.812) (21.200)

Excess CO, 100 tons 0.671 –0.712** 1.832* 4.034
(0.473) (0.291) (0.971) (3.022)

Mean monthly death rate per 100k 409.45 182.45 440.58 1280.31
Adj. R2 0.39 0.22 0.21 0.19
Observations 44658 44150 44266 44151

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the
county level in parentheses. Each regression is weighted by the county population of
the relevant subgroup.
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