

UPSynergy: Chinese-American Spy vs. Spy Story

Research By: Mark Lechtik & Nadav Grossman

Introduction

Earlier this year, our colleagues at Symantec uncovered an interesting story about

the use of Equation group exploitation tools by an alleged Chinese group named

Buckeye (a.k.a APT3, or UPS team). One of the key findings in their publication was

that variants of the Equation tools were used by the group prior to ‘The Shadow

Brokers’ public leak in 2017. Moreover, it seems that APT3 developed its own in-

house capabilities and equipped its attack tool with a 0-day that targeted the

Windows operating system.

Following these revelations, we decided to expand on Symantec’s findings and take

a deeper look at Bemstour, the group’s exploitation tool. In our analysis, we try to

understand the background environment in which it was created, and provide our

perspective of how it was developed. We reached the following conclusions:

● Bemstour makes use of a variant of a single Equation group exploit. Our

research shows that the particular equivalent to this exploit is

EternalRomance. APT3 developed their own implementation, possibly based

on their analysis and understanding of EternalRomance’s leveraged

vulnerability.

● The group attempted to develop the exploit in a way that allowed it to target

more Windows versions, similar to what was done in a parallel Equation group

exploit named EternalSynergy. This required looking for an additional 0-day

that provided them with a kernel information leak. All of this activity suggests

that the group was not exposed to an actual NSA exploitation tool, as they

would then not need to create another 0-day exploit. We decided to name

APT3’s bundle of exploits UPSynergy, since, much like in the case of

Equation group, it combines 2 different exploits to expand the support to

newer operating systems.

● The underlying SMB packets used throughout the tool execution were crafted

manually by the developers, rather than generated using a third party library.

As a lot of these packets were assigned with hardcoded and seemingly

arbitrary data, as well as the existence of other unique hardcoded SMB

artifacts, we can assume that the developers were trying to recreate the

exploit based on previously recorded traffic.

● If network traffic was indeed used by the group as a reference, the traffic was

likely collected from a machine controlled by APT3. This means either a

Chinese machine that was targeted by the NSA and monitored by the group,

or a machine compromised by the group beforehand on which foreign activity

was noticed. We believe the former is more likely, and in that case could be

https://www.symantec.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit

made possible by capturing lateral movement within a victim network targeted

by the Equation group.

● Finding a 0-day info leak, recreating the exploit based on the aforementioned

vulnerability, and utilizing a lot of internal undocumented structures of SMB in

the implants, implies that there was a similar expertise with and analysis

performed on SMB drivers (with an eye to exploiting them) on the Chinese

side, roughly at the same time it was widely used by the NSA. This, to some

extent, suggests a narrative where China and the US are engaged in a cyber

arms race to develop new exploits.

In the following sections, we provide the technical basis for our conclusions, by

taking a tour through the tool’s internals, its underlying exploit, and the implant’s nuts

and bolts. We also dive deeply into the root cause for the 0-day found by APT3. To

the best of our knowledge, this hasn’t been described anywhere else.

Overview of the Bemstour Tool

Besmtour is a tool developed by APT3 to gain remote code execution on a victim’s

machine using UPSynergy - a combination of an exploit based on EternalRomance

and a 0-day found by the group itself. The goal is to deploy a payload on the victim’s

machine which is injected to a running process using an implant. This implant is

highly similar to the Equation group’s DoublePulsar.

The tool is meant to be run from a command line, and provides 2 modes of

operation. In the first, the attacker sends a local file which will be executed on the

victim machine with a given command line argument. In the 2nd mode, the attacker

runs an arbitrary shell command without the need to send an actual file.

These functionalities are supported in both 32 and 64 bit versions. According to

Symantec, the 64 bit versions were leveraged solely for executing shell commands,

mostly to generate new user accounts in the victims’ environments.

Figure: The 2 modes of operation provided by Bemstour.

One thing we noted about Bemstour’s code is the way it generates and sends traffic

to the victim’s machine. In particular, we noticed that all packets are built manually,

i.e. the developers created structs to represent the various SMB packets to send to

the victim, and issued them over plain TCP sockets.

Figure: An example of a manually constructed SMB header.

As part of the manual crafting of SMBs, the developers assigned them with values

hardcoded in the binary. Some of these reside within the data section in the form of

custom structs, such as the one depicted in the figure below. When such a

hardcoded assignment is required, an allocated SMB and the hardcoded structure

are issued as arguments to a specific function, which in turn takes the custom

struct’s field values and assigns them to the corresponding SMB fields.

Figure: A custom structure containing fields to populate SMB headers with hardcoded

values.

When looking at a structure like this, it’s noteworthy that some of its fields represent

unique values that are generated per SMB connection. One such value is the UID,

which can be declared by the client and therefore could be chosen arbitrarily by

Bemstour. In this case, there are multiple instances where this field is given

hardcoded unique values in a particular range, which may hint that they were copied

from a source like recorded network traffic.

Figure: Instances of the custom hardcoded SMB header structure.

We found other hardcoded structures that are actually not used in any place in the

code, but whose values and order imply the field they represent. This suggests that

these are header fragments that were left as residues in the binary from another

source. An example of such structs is shown below, where a numeric proximity can

be seen to those UIDs that are used in the code.

Figure: Unused fragments of SMB header that are left in the binary.

There are additional hardcoded artifacts that may provide some insight into the tool’s nature.

For example, the PDB path (seen in the figure below) points out that the tool’s source name

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/a4a70059-d263-47e0-be65-1f773a9b08be

is “SMB Master”, and it was part of a project called “SMB_FOR_ALL_Ultimate-signature.”

Based on this, we can speculate that the project was indeed about repurposing an SMB

exploit to target “ALL” (or at least more) versions of Windows.

Figure: PDB path hardcoded in the tool’s binary.

Finally, more unused strings show something that looks like a concatenation of a computer

name, user name and perhaps domain name. It is unclear where they come from, but again,

strengthens the idea that this network entity was part of a referenced traffic capture.

Figure: Unused strings that reveal a network entity.

Overview of the Eternal* Exploits

Before we take a further look at the details of APT3’s exploit implementation, we

need to understand the various Eternal exploits that were incorporated into the Lost

in Translation leak by The Shadow Brokers. Back in 2017, when this leak was

released, 4 Eternal exploits were uncovered: EternalBlue, EternalChampion,

EternalRomance and EternalSynergy.

Both EternalBlue and EternalRomance targeted mostly Windows 7 systems (as well

as lower version of Windows NT where SMBv1 is located). One of the problems in

adapting EternalRomance to higher Windows versions was a patch introduced in

Windows 8 which eliminated the possibility to use an information leak vulnerability

leveraged by it.

To deal with this problem, the Equation group came up with an upgraded version

where the problematic info leak was replaced with one that could be exploited on

Windows 8. Essentially, there was nothing new there, as the info leak exploit was

already used in EternalChampion and other parts of EternalRomance remained the

same. This new hybrid exploit was named EternalSynergy, suggesting the way it

was built - a synergy of 2 exploits.

When it comes to the exploit in the Bemstour tool, it is evident that there’s an attempt

to leverage the same vulnerability exploited by EternalRomance. At the same time,

there is the use of a whole new information leak exploit, which was in fact a 0-day

found by APT3. As we will see in the upcoming section, this particular information

leak is quite robust and allowed the group to upgrade their version of

EternalRomance to use in versions higher than Windows 7.

https://github.com/misterch0c/shadowbroker
https://github.com/misterch0c/shadowbroker
https://research.checkpoint.com/eternalblue-everything-know/

In this sense, APT3 crafted its own exploit from other exploits - a tactic very similar to

one used by the Equation group. As this threat group also uses the name UPS team,

we decided to name their version of the exploit bundle UPSynergy.

Root Cause Analysis of CVE 2019-0703

According to Microsoft, CVE-2019-0703 is “an information disclosure vulnerability

[that] exists in the way [...] the Windows SMB Server handles certain requests. An

authenticated attacker who successfully exploited this vulnerability could craft a

special packet, which could lead to information disclosure from the server.

To exploit the vulnerability, an attacker would have to be able to authenticate and

send SMB messages to an impacted Windows SMB Server The security update

addresses the vulnerability by correcting how Windows SMB Server handles

authenticated requests.”

Our analysis shows a slightly different picture. The vulnerability is in fact a logical

bug related to querying information from the Windows Named Pipes mechanism,

and not a vulnerabilityin the SMB protocol nor its implementation. While it can be

triggered using SMB, there are other ways to leverage it, e.g. using the

NtQueryInformationFile Windows API call that is unrelated to SMB.

The bug resides within npfs.sys (Name Pipe File System driver) in a function named

NpQueryInternalInfo. The latter is used to query named pipes and return a value

called a file reference number, which according to Microsoft “MUST be assigned by

the file system and is unique to the volume on which the file or directory is located.”

However, our analysis shows that the returned value is not a file reference number,

but rather a pointer to a kernel structure named CCB (Client Control Block). This is

an undocumented struct defined in npfs.sys, which has a partial definition (named

NP_CCB) provided by the ReactOS project. Clearly, this is not the intended value to

be returned in this case, and the leak of this struct discloses useful information that

can be leveraged by attackers.

Figure: The leaked object is in fact a CCB struct, as evident from WinDbg.

To trigger this information disclosure vulnerability, a call with the following arguments

is made to the NtQueryInformationFile stub in ntdll.dll:

FileHandle – Handle to a named pipe (for example “\\.\pipe\browser").

FileInformationClass – FileInternalInformation (equals 0x6).

After this happens, we get the following call stack:

https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://doxygen.reactos.org/d4/d30/drivers_2filesystems_2npfs_2npfs_8h_source.html
https://reactos.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/ns-ntifs-_file_internal_information
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/ns-ntifs-_file_internal_information

Figure: Kernel mode call stack corresponding to an NtQueryInformationFile call from user

mode.

As already mentioned, it is also possible to trigger this vulnerability via SMB, as was

used by APT3. The method was used to determine the bitness of the attacked

operating system and overwrite (using a write primitive) a field in the leaked

structure, which eventually provided the group with remote code execution.

To leverage the vulnerability, you must first establish an SMB connection to a named

pipe on the victim’s machine, as can be seen in the figure below.

Figure: Network capture of SMB packets that demonstrates an establishment of a

connection to the \pipe\browser named pipe (FID 0x4000).

Next, it’s possible to query information about the opened pipe using the 0x32 SMB

command (SMB_COM_TRANSACTION2) and the 0x7 subcommand

(TRANS2_QUERY_FILE_INFORMATION). The latter has a field named

InformationLevel which describes the types of information that can be retrieved by

the server.

Furthermore, if the server declared a capability named Infolevel Passthru in its

Negotiate Response field as a part of an earlier negotiation (a capability usually

provided by default), more types of information can be retrieved, namely ones that

provide native file information on the server. In this case, the former capability allows

it to provide a code number named a Pass-thru Information Level by the client, which

maps directly to another Windows NT numerical value called an Information Class

on the server. This value corresponds to the FileInformationClass parameter of the

NtQueryInformationFile API, which specifies what type of file information to query

from a server destined file object.

To use one of the pass-thru Information Levels to request a corresponding

Information Class for a file on the server, it is sufficient to add the value 0x3e8

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/714bb6fa-7fab-4dab-8ff8-8a01c273b9ce
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/f4503a0b-f809-477f-8ef6-9633ee90d1cc
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/c7d64f17-1ab6-4151-b9e8-f15813235c83#gt_b01da706-86d0-4ee2-9461-2d9fb1060543
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/794afe2e-7c11-4a8c-b909-0a397966f6a9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/794afe2e-7c11-4a8c-b909-0a397966f6a9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/ab2aca37-6c9e-4505-baa9-9e2bc556c475
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/4718fc40-e539-4014-8e33-b675af74e3e1

(SMB_INFO_PASSTHROUGH) to the requested Information Class. As an example,

if we take the FileInternalInformation Information Class (which has the value 6) and

want to get the corresponding Information Level, we just need to add the previously

mentioned value to it, resulting in the value 0x3ee.

In our case, using this very same Information Level by placing it as a parameter of

the TRANS2_QUERY_FILE_INFORMATION subcommand, triggers the vulnerability

by causing the invocation of the NtQueryInformationFile from the srv.sys driver (SMB

driver). The latter in turn calls the vulnerable NpQueryInternalInfo from npfs.sys, as

depicted in the stack trace below.

Figure: Kernel mode calls stack resulting from execution of the SMB transaction that triggers

the bug.

Consequently, when we issue a Trans2 request to query for a file info using the

previously mentioned Info Level, we get a CCB leaked pointer in the response.

Figure: Wireshark's view of triggering the vulnerability.

To examine the described root cause for the vulnerability from another angle, we can

take a look at the diff between the patched and unpatched code in npfs.sys:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/7d796611-2fa5-41ac-8178-b6fea3a017b3
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/0a96fae0-b183-42b6-92bd-e05b1d92f434
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile

Figure: Patch diff - The vulnerable code can be seen in the upper part.

As can be seen in the vulnerable code, the out_buffer argument returned to the

caller and then to the client contains a pointer to the ClientControlBlock (NP_CCB)

argument instead of the file reference number. This is fixed in the patched code,

where offsets 0xa0 and 0xa4 from ClientControlBlock are written to the out_buffer

instead, thus returning the actual intended file reference number to the caller and

client.

As mentioned previously, the information obtained from this info leak can give us the

ability to execute code on the victim machine, using another write primitive. To

understand how this is possible, we need to take a closer look at the CCB structure.

One of its members points to yet another undocumented struct, which we will denote

as ‘struct x’. This struct contains a pointer to a function that is called when the

connection to the named pipe is terminated, which we’ll refer to as the ‘pipe

destructor function’.

In APT3’s implementation of the exploit, the HAL heap is written with both shellcode

and a rogue instance of ‘struct x’. The latter simply contains a pointer to the

shellcode in the position of the ‘pipe destructor function’. Therefore, when we use a

write primitive and know the whereabouts of the leaked CCB structure, we can

overwrite its pointer to ‘struct x’ so that it points to the rogue instance. After the

connection is closed, the shellcode is triggered and the attacker can run arbitrary

code on the victim’s machine.

Comparison of UPSynergy and Eternal Romance Implementations

One of the observations we made during our analysis of Bemstour was that its main

exploit targets only a particular vulnerability that overlaps with one used by the

Equation group. This vulnerability is rooted in a type confusion bug leveraged in a

similar fashion in the EternalRomance exploit, which was then reused together with

other exploits in EternalSynergy.

As a result of this type confusion between SMB messages, the server considers an

unrelated SMB message as part of an SMB Transaction of a different type, and

activates the wrong type of SMB handler. This handler in turn shifts the Transaction

struct’s pointer to the incoming data buffer by the amount of data received in the

SMB message. Because the pointer value was shifted by the wrong handler, data of

further SMB messages (which are treated by the correct type of handler) can be

potentially written outside the boundaries of the incoming data buffer. If there was

successful grooming (i.e. the heap was correctly shaped beforehand), this out-of-

bound write may allow us to overwrite an adjacent SMB Transaction structure.

Instead of going through every detail of APT3’s exploit, the table below compares the

underlying techniques used by EternalRomance vs. those used by UPSynergy.

Detailed information about the bug (CVE-2017-0143) and how it was exploited in

EternalRomance to gain a write-what-where and read-what-where primitives is

explained very well by Microsoft in their analysis of EternalSynergy.

Exploitation Technique EternalRomance APT3 Exploit (UPSynergy)

Determine the OS Type Determined from the
server’s session SetupAndX
response (part of a session
negotiation), where the
underlying target OS is
specified.

Same technique.

Determine the OS Bitness Uses a leaked pool header
structure that contains
parameters from which the
OS architecture can be
inferred.

Uses the address of the
leaked CCB structure to
infer the range in which it
resides and the underlying
architecture.

Grooming Technique (Heap
Shaping)

Uses 2 types of allocations
with different sizes, named
“bride” and “groom.” Another
technique is used for OS
versions prior to Windows 7.

Uses “bride” allocations
only, with a different
allocation size.

Leaked Object Leaks a kernel object
named Transaction

Leaks a kernel object
named CCB (Client Control

https://msrc-blog.microsoft.com/2017/07/13/eternal-synergy-exploit-analysis/

(corresponding to an SMB
Transaction).

Block).

OOB Write Vulnerability A result of a type confusion
bug, as outlined above.

Same vulnerability.

Write-What-Where primitive Can be achieved by
overwriting the input buffer
pointer of a target
Transaction structure, as
outlined above.

Same technique.

Read-What-Where primitive Can be achieved by
overwriting the output buffer
pointer of a target
Transaction structure, as
outlined above.

APT3 doesn’t use this
primitive.

RWE Cave Uses an RWE page in the
srv.sys memory section.

Uses HAL’s heap.

First Shellcode Execution Overwrites an
unimplemented SMB
command pointer in the
SMB command handler
table, and sends an SMB
transaction for this
command to execute a
handler (which is in fact
shellcode).

Overwrites a named pipe
connection handler function
which executes after the
connection is closed.

In addition, we conducted a quantitative analysis of various actions performed during

both exploits, as can be seen in the following table:

Parameter EternalRomance APT3 Exploit
(UPSynergy)

Info leak exploit usage 2 times 1 time

Usage of a write-what-where
primitive

24 times 3 times

Usage of a read-what-where
primitive

4 times Not used

Number of attempts to
overwrite a Transaction
structure in case of failure
on the first try

2 attempts 0 attempts

From this table, we can infer that the UPSynergy information leak significantly eases

the exploitation process, as the leaked CCB object described earlier contains almost

a direct code execution primitive. In EternalRomance, we could see the usage of a

read-what-where primitive, mainly used for dereferencing child structs of a leaked

Transaction struct. In the case of UPSynergy, that would be redundant.

Having said that, there is a slight chance of instability in the grooming

implementation of UPSynergy, where a write to an unallocated page might lead to an

unintended BSOD. This will not happen in EternalRomance (point for the Equation

group).

Comparison of APT3 and Equation Group Implants

The last action to take place following the exploitation is the set-up and invocation of

an implant shellcode. The purpose is to serve as a basic backdoor, allowing the

attacker to issue a further kernel mode payload and execute it on the target machine.

In the case of both APT3 and Equation group, an implant named DoublePulsar is

used. This implant was leaked by The Shadow Brokers in 2017.

In both cases, there is a very similar flow to the implant’s operation - a hook is set up

for a particular SMB handler function to handle invalid SMBs. This hook searches for

one of 3 commands in a particular SMB field and executes a corresponding function

for each one. One of the supported commands is responsible for accepting further

shellcode and running it - the last stage payload. At this point, the attacker may issue

an arbitrary piece of code for execution in the kernel space.

As far as APT3’s implant is concerned, it seems likely f the DoublePulsar code was

reused as is. The code is not executed directly, but has several layers of

obfuscation. Essentially, the Equation group’s DoublePulsar code is wrapped with an

APT3 position independent crypter & loader.

In the following sections, we take a look at the differences and supplements provided

by APT3. As we will see, the main logic flow was preserved in both cases. However,

the differences show that APT3 did not want to fully disclose the fact it was using an

allegedly American implant.

1st Stage - DoublePulsar Loader

The very first stage of the implant’s code is a custom loader written by APT3, which

extracts an encrypted version of DoublePulsar code from incoming SMB packets,

and decrypts and executes it. This is in fact a self-modifying piece of code, i.e.

before it actually handles any of the aforementioned functionalities, it must decrypt

subsequent parts of itself. The code is wrapped in 2 layers using simple crypters, so

the first crypter decodes the second, and the latter decodes the actual loader code.

Figure: First and second phase of decoding the loader’s payload.

After these phases are completed, the loader starts its operation which is broken

down into the following steps:

1. Dynamic function resolution.

2. Determine the OS version.

3. Locatethe SrvTreeConnectList in Srv.sys.

4. Extract the encoded shellcode from a Transaction object list.

5. Execute the shellcode.

The figure below summarizes this flow, showing the main code of this loader. We

then present a detailed outline of each of these steps, and point out the major

differences that set this code apart from that of the Equation group.

Figure: The main flow of the 1st stage loader.

● Step 1: Dynamic function resolution

As this is essentially position independent code, we need to resolve some API

functions dynamically, which are then used during run time. First, we must

locate the base address of the ntoskrnl.exe image. We do this by obtaining

the KPCR structure from the FS register, and use offset 0x38 which points to

KIDTENTRY *IDT (i.e. the interrupt dispatch table). As we know the latter

resides within ntoskrnl.exe and is aligned to the beginning of a page, so it is

sufficient to walk back in page multiples until the start of the page is

equivalent to the magic number of a PE.

After that is done, it’s possible to parse the export table of ntoskrnl.exe to

achieve several basic API function addresses. A common technique is to

parse the export tables of a relevant loaded image where these functions

reside (e.g. ntoskrnl.exe), hash the names of their exports, and compare them

to hardcoded ones. The latter represent the names of the functions that

require address resolution. In this case, we see that the hashing function

differs from that of the Equation group, resulting in different name hashes.

Function Name APT3 Hash Equation Hash

ZwQuerySystemInformaiton 0x8754A7F7 0x0D2515B2E

ExAllocatePoolWithTag 0x37F154D9 -

ExAllocatePool - 0x0E3690194

ExFreePool 0x3F7747DE 0x0F0835485

RtlGetVersion 0x0DDE5CDD -

Figure: Different name hashing implementations and their resulting string hashes.

We see that not only different hashing algorithms are used, but also different

API functions. For instance, the Equation group uses a simple pool allocation

via the ExAllocatePool API, while APT3 uses a tagged allocation and calls

ExAllocatePoolWithTag. In the latter case, the used tag represents a work

context structure.

Figure: APT3 tagged allocation.

● Step 2: Determining the OS version

Next, the loader invokes the RtlGetVersion function to obtain information

about the underlying Windows version. It then assigns a numeric value to a

field in a particular struct maintained by the loader, which corresponds to the

OS version. The value is in fact an offset into an undocumented SMB struct

called CONNECTION, which will result in a field that points to yet another

undocumented struct called PAGED_CONNECTION. How this struct is used

will be evident in subsequent steps.

Figure: Determining the version of Windows, and choosing a corresponding

offset value.

● Step 3: Locating Srv.sys and SrvTreeConnectList

At this point, the loader tries to find Srv.sys (the SMB driver’s image) and

parse it. This is done to locate a global undocumented list named

SrvTreeConnectList. Srv.sys is located using ZwQuerySystemInformation to

obtain a list of loaded module information (where a base address of the

loaded images is specified), while the struct is found by going through

Srv.sys’ .data section and looking for several identifying numeric parameters.

● Step 4: Extracting encoded shellcode from a Transaction object list.

After the list is found, it is used to go through several linked SMB structures to

finally obtain a list of Transaction structs. The latter allows us to access the

data obtained from relevant SMB Trans packets which contains the

subsequent shellcode.

The chain of these structures can be seen in the figure below. The main

takeaway is that all of these structures are undocumented - i.e. the

developers of APT3 must have done quite a bit of reverse engineering on

Srv.sys to infer them (on more than one Windows version, as evident from the

offset to PAGED_CONNECTION). This effort is very similar to the one

invested by the NSA to find the various Eternal exploits around the same time.

Figure: APT3’s code to ‘walk’ through various undocumented SMB strucures,

suggesting that a considerable analysis was performed and the group’s

members have a good understanding of the SMB internals.

● Step 5: Executing the shellcode

After the shellcode is obtained and decoded, it is finally executed. This leads

to the next stage, which is yet another piece of self-modifying PIC. However,

in this case, most of the code that is unravelled after 2 layers of decoding is a

variant of the original DoublePulsar, as used by the Equation group.

2nd Stage - DoublePulsar Installation & Hook

In this stage of the implant’s operation, yet another shellcode runs. As previously

mentioned, this code is obfuscated with 2 layers of crypters, the same ones used to

wrap the loader in the 1st stage. The code that is unpacked was mostly not written

by APT3.

The first part of the resulting PIC seems to be custom-made, and invokes a system

thread that works periodically to form paged allocations of various sizes. It can run in

rounds indefinitely, creating 256 allocations for each round and counting the number

that get an address within the range of 64 bytes from the point in which the first

shellcode was written. Only if there are more than 64 ‘faulty’ allocations can this loop

terminate. The purpose is not fully clear, but could be an attempt to avoid paging out

the shellcode buffers from the paged pool.

The other part of this internal payload installs DoublePulsar. This is done by

replacing a function pointer to point at a hook function instead of the original function

named SrvTransactionNotImplemented. The replacement of this pointer happens in

a hard-coded table in the SMB driver (srv.sys) named

SrvTransaction2DispatchTable.

In essence, both APT3 and the Equation group take similar steps to achieve this

goal. These are outlined in the figure below, and are more thoroughly explained here

and here.

Figure: The general steps taken to install DoublePulsar’s hook, in both

implementations of the shellcode.

You can see the similarity in the call flow graph comparison of these hook functions:

Figure: CFG comparison of the DoublePulsar hook functions.

https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html
https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html
https://blog.checkpoint.com/2017/07/03/brokers-shadows-part-2-analyzing-petyas-doublepulsarv2-0-backdoor/

This particular hook function anticipates an initial command named “ping” where a

XOR key is obtained from the attacker. This key can then be used to decode the

payload of subsequent SMBs carrying additional shellcode. The latter is executed as

part of another command called “exec”.

Figure: Commands supported by the 2nd stage hook backdoor.

There is an addition to the code that was not observed in other variants of

DoublePulsar. This addition is a common snippet used to disable the WP bit flag of

the CR0 register, which allows the kernel to write into read only pages. It is not clear

if this serves any purpose in the implant’s operation, but it is reasonable to assume

that it was bundled to a version of DoublePulsar that was captured by APT3 and was

simply left as a code residue.

Figure: Code snippet from DoublePulsar, used to clear the WP flag in CR0.

3rd Stage - APC Injector

The last stage of the implant is a piece of code that performs APC injection of a

hardcoded routine to the “services.exe” process in the user space. In turn, this

routine can write a given payload to a new file and execute it, or run a shell

command. In both cases, the API used for the execution is WinExec.

It’s worth noting that while an arbitrary command can be issued by the user, there

are several hardcoded commands that the shellcode runs through the invoked APC

in the user space. One of these commands adds a new user as local admin with a

hardcoded name and password. In the sample analyzed for this publication, this

username is cessupport and the password is 1qaz#EDC.

Figure: Hardcoded shell command user to add a new admin user to the system.

The implementation of this part doesn’t resemble that of the Equation group

(compared to their equivalent APC injector). It’s also different from the previous

stages of APT3’s implant. For example, function resolution does not use string

hashes anymore, but rather makes comparisons to strings stored in the stack. The

allocations are no longer tagged and the overall choice of API functions for similar

actions looks different. This may mean that there was another entity within the group

that was involved in the development of this part, but not of previous ones.

Conclusion

In our research, we analyzed and compared the exploit development efforts done by

2 major actors in the APT landscape – the Equation group and APT3. While the

former is known for its advanced and almost unparalleled capabilities in the field of

vulnerability research, it is interesting to observe how other groups focus on similar

research objectives, with a considerable degree of success.

It’s not always clear how threat actors achieve their exploitation tools, and it’s

commonly assumed that actors can conduct their own research and development or

get it from a third party. In this case we have evidence to show that a third (but less

common) scenario took place - one where attack artifacts of a rival (i.e. Equation

group) were used as the basis and inspiration for establishing in-house offensive

capabilities by APT3.

Although we can’t prove this beyond any doubt, we brought many facts and analysis

findings to back up our speculations. We will continue our efforts to find the answers

to these as well as any future questions that arise.

We would like to thank Eyal Itkin for assisting in parts of the analysis during this

research.

IOCs

MD5:

F595228976CC89FFAC02D831E774CFA6

SHA1:

80143E32F887B2583B777DAEC5982FB5C2886FB3

SHA256:

0B28433A2B7993DA65E95A45C2ADF7BC37EDBD2A8DB717B85666D6C88140698A

Yara Rules:

rule apt3_bemstour_strings

{

 meta:

 description = "Detects strings used by the Bemstour

exploitation tool"

 author = "Mark Lechtik"

 company = "Check Point Software Technologies LTD."

 date = "2019-06-25"

 sha256 =

"0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"

 strings:

 $dbg_print_1 = "leaked address is 0x%llx" ascii wide

 $dbg_print_2 = "========== %s ==========" ascii wide

 $dbg_print_3 = "detailVersion:%d" ascii wide

 $dbg_print_4 = "create pipe twice failed" ascii wide

 $dbg_print_5 = "WSAStartup function failed with error: %d"

ascii wide

 $dbg_print_6 = "can't open input file." ascii wide

 $dbg_print_7 = "Allocate Buffer Failed." ascii wide

 $dbg_print_8 = "Connect to target failed." ascii wide

 $dbg_print_9 = "connect successful." ascii wide

 $dbg_print_10 = "not supported Platform" ascii wide

 $dbg_print_11 = "Wait several seconds." ascii wide

 $dbg_print_12 = "not set where to write ListEntry ." ascii wide

 $dbg_print_13 = "backdoor not installed." ascii wide

 $dbg_print_14 = "REConnect to target failed." ascii wide

 $dbg_print_15 = "Construct TreeConnectAndX Request Failed."

ascii wide

 $dbg_print_16 = "Construct NTCreateAndXRequest Failed." ascii

wide

 $dbg_print_17 = "Construct Trans2 Failed." ascii wide

 $dbg_print_18 = "Construct ConsWXR Failed." ascii wide

 $dbg_print_19 = "Construct ConsTransSecondary Failed." ascii

wide

 $dbg_print_20 = "if you don't want to input password , use

server2003 version.." ascii wide

 $cmdline_1 = "Command format %s TargetIp domainname username

password 2" ascii wide

 $cmdline_2 = "Command format %s TargetIp domainname username

password 1" ascii wide

 $cmdline_3 = "cmd.exe /c net user test test /add && cmd.exe /c

net localgroup administrators test /add" ascii wide

 $cmdline_4 = "hello.exe \"C:\\WINDOWS\\DEBUG\\test.exe\""

ascii wide

 $cmdline_5 = "parameter not right" ascii wide

 $smb_param_1 = "browser" ascii wide

 $smb_param_2 = "spoolss" ascii wide

 $smb_param_3 = "srvsvc" ascii wide

 $smb_param_4 = "\\PIPE\\LANMAN" ascii wide

 $smb_param_5 = "Werttys for Workgroups 3.1a" ascii wide

 $smb_param_6 = "PC NETWORK PROGRAM 1.0" ascii wide

 $smb_param_7 = "LANMAN1.0" ascii wide

 $smb_param_8 = "LM1.2X002" ascii wide

 $smb_param_9 = "LANMAN2.1" ascii wide

 $smb_param_10 = "NT LM 0.12" ascii wide

 $smb_param_12 = "WORKGROUP" ascii wide

 $smb_param_13 = "Windows Server 2003 3790 Service Pack 2" ascii

wide

 $smb_param_14 = "Windows Server 2003 5.2" ascii wide

 $smb_param_15 = "Windows 2002 Service Pack 2 2600" ascii wide

 $smb_param_16 = "Windows 2002 5.1" ascii wide

 $smb_param_17 = "PC NETWORK PROGRAM 1.0" ascii wide

 $smb_param_18 = "Windows 2002 5.1" ascii wide

 $smb_param_19 = "Windows for Workgroups 3.1a" ascii wide

 $unique_str_1 = "WIN-NGJ7GKNROVS"

 $unique_str_2 = "XD-A31C2E0087B2"

 condition:

 uint16(0) == 0x5a4d and (5 of ($dbg_print*) or 2 of ($cmdline*)

or 1 of ($unique_str*)) and 3 of ($smb_param*)

}

rule apt3_bemstour_implant_byte_patch

{

 meta:

 description = "Detects an implant used by Bemstour exploitation

tool (APT3)"

 author = "Mark Lechtik"

 company = "Check Point Software Technologies LTD."

 date = "2019-06-25"

 sha256 =

"0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"

 /*

 0x41b7e1L C745B8558BEC83 mov dword ptr [ebp - 0x48],

0x83ec8b55

 0x41b7e8L C745BCEC745356 mov dword ptr [ebp - 0x44],

0x565374ec

 0x41b7efL C745C08B750833 mov dword ptr [ebp - 0x40],

0x3308758b

 0x41b7f6L C745C4C957C745 mov dword ptr [ebp - 0x3c],

0x45c757c9

 0x41b7fdL C745C88C4C6F61 mov dword ptr [ebp - 0x38],

0x616f4c8c

 */

 strings:

 $chunk_1 = {

 C7 45 ?? 55 8B EC 83

 C7 45 ?? EC 74 53 56

 C7 45 ?? 8B 75 08 33

 C7 45 ?? C9 57 C7 45

 C7 45 ?? 8C 4C 6F 61

 }

 condition:

 any of them

}

rule apt3_bemstour_implant_command_stack_variable

{

 meta:

 description = "Detecs an implant used by Bemstour exploitation

tool (APT3)"

 author = "Mark Lechtik"

 company = "Check Point Software Technologies LTD."

 date = "2019-06-25"

 sha256 =

"0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"

 strings:

 /*

 0x41ba18L C78534FFFFFF636D642E mov dword ptr [ebp - 0xcc],

0x2e646d63

 0x41ba22L C78538FFFFFF65786520 mov dword ptr [ebp - 0xc8],

0x20657865

 0x41ba2cL C7853CFFFFFF2F632063 mov dword ptr [ebp - 0xc4],

0x6320632f

 0x41ba36L C78540FFFFFF6F707920 mov dword ptr [ebp - 0xc0],

0x2079706f

 0x41ba40L C78544FFFFFF2577696E mov dword ptr [ebp - 0xbc],

0x6e697725

 0x41ba4aL C78548FFFFFF64697225 mov dword ptr [ebp - 0xb8],

0x25726964

 0x41ba54L C7854CFFFFFF5C737973 mov dword ptr [ebp - 0xb4],

0x7379735c

 0x41ba5eL C78550FFFFFF74656D33 mov dword ptr [ebp - 0xb0],

0x336d6574

 0x41ba68L C78554FFFFFF325C636D mov dword ptr [ebp - 0xac],

0x6d635c32

 0x41ba72L C78558FFFFFF642E6578 mov dword ptr [ebp - 0xa8],

0x78652e64

 0x41ba7cL C7855CFFFFFF65202577 mov dword ptr [ebp - 0xa4],

0x77252065

 0x41ba86L C78560FFFFFF696E6469 mov dword ptr [ebp - 0xa0],

0x69646e69

 0x41ba90L C78564FFFFFF72255C73 mov dword ptr [ebp - 0x9c],

0x735c2572

 0x41ba9aL C78568FFFFFF79737465 mov dword ptr [ebp - 0x98],

0x65747379

 0x41baa4L C7856CFFFFFF6D33325C mov dword ptr [ebp - 0x94],

0x5c32336d

 0x41baaeL C78570FFFFFF73657468 mov dword ptr [ebp - 0x90],

0x68746573

 0x41bab8L C78574FFFFFF632E6578 mov dword ptr [ebp - 0x8c],

0x78652e63

 0x41bac2L C78578FFFFFF65202F79 mov dword ptr [ebp - 0x88],

0x792f2065

 0x41baccL 83A57CFFFFFF00 and dword ptr [ebp - 0x84], 0

 */

 $chunk_1 = {

 C7 85 ?? ?? ?? ?? 63 6D 64 2E

 C7 85 ?? ?? ?? ?? 65 78 65 20

 C7 85 ?? ?? ?? ?? 2F 63 20 63

 C7 85 ?? ?? ?? ?? 6F 70 79 20

 C7 85 ?? ?? ?? ?? 25 77 69 6E

 C7 85 ?? ?? ?? ?? 64 69 72 25

 C7 85 ?? ?? ?? ?? 5C 73 79 73

 C7 85 ?? ?? ?? ?? 74 65 6D 33

 C7 85 ?? ?? ?? ?? 32 5C 63 6D

 C7 85 ?? ?? ?? ?? 64 2E 65 78

 C7 85 ?? ?? ?? ?? 65 20 25 77

 C7 85 ?? ?? ?? ?? 69 6E 64 69

 C7 85 ?? ?? ?? ?? 72 25 5C 73

 C7 85 ?? ?? ?? ?? 79 73 74 65

 C7 85 ?? ?? ?? ?? 6D 33 32 5C

 C7 85 ?? ?? ?? ?? 73 65 74 68

 C7 85 ?? ?? ?? ?? 63 2E 65 78

 C7 85 ?? ?? ?? ?? 65 20 2F 79

 83 A5 ?? ?? ?? ?? 00

 }

 /*

 0x41baeeL C785D8FEFFFF636D6420 mov dword ptr [ebp - 0x128],

0x20646d63

 0x41baf8L C785DCFEFFFF2F632022 mov dword ptr [ebp - 0x124],

0x2220632f

 0x41bb02L C785E0FEFFFF6E657420 mov dword ptr [ebp - 0x120],

0x2074656e

 0x41bb0cL C785E4FEFFFF75736572 mov dword ptr [ebp - 0x11c],

0x72657375

 0x41bb16L C785E8FEFFFF20636573 mov dword ptr [ebp - 0x118],

0x73656320

 0x41bb20L C785ECFEFFFF73757070 mov dword ptr [ebp - 0x114],

0x70707573

 0x41bb2aL C785F0FEFFFF6F727420 mov dword ptr [ebp - 0x110],

0x2074726f

 0x41bb34L C785F4FEFFFF3171617A mov dword ptr [ebp - 0x10c],

0x7a617131

 0x41bb3eL C785F8FEFFFF23454443 mov dword ptr [ebp - 0x108],

0x43444523

 0x41bb48L C785FCFEFFFF202F6164 mov dword ptr [ebp - 0x104],

0x64612f20

 0x41bb52L C78500FFFFFF64202626 mov dword ptr [ebp - 0x100],

0x26262064

 0x41bb5cL C78504FFFFFF206E6574 mov dword ptr [ebp - 0xfc],

0x74656e20

 0x41bb66L C78508FFFFFF206C6F63 mov dword ptr [ebp - 0xf8],

0x636f6c20

 0x41bb70L C7850CFFFFFF616C6772 mov dword ptr [ebp - 0xf4],

0x72676c61

 0x41bb7aL C78510FFFFFF6F757020 mov dword ptr [ebp - 0xf0],

0x2070756f

 0x41bb84L C78514FFFFFF61646D69 mov dword ptr [ebp - 0xec],

0x696d6461

 0x41bb8eL C78518FFFFFF6E697374 mov dword ptr [ebp - 0xe8],

0x7473696e

 0x41bb98L C7851CFFFFFF7261746F mov dword ptr [ebp - 0xe4],

0x6f746172

 0x41bba2L C78520FFFFFF72732063 mov dword ptr [ebp - 0xe0],

0x63207372

 0x41bbacL C78524FFFFFF65737375 mov dword ptr [ebp - 0xdc],

0x75737365

 0x41bbb6L C78528FFFFFF70706F72 mov dword ptr [ebp - 0xd8],

0x726f7070

 0x41bbc0L C7852CFFFFFF74202F61 mov dword ptr [ebp - 0xd4],

0x612f2074

 0x41bbcaL C78530FFFFFF64642200 mov dword ptr [ebp - 0xd0],

0x226464

 0x41bbd4L 6A5C push 0x5c

 */

 $chunk_2 = {

 C7 85 ?? ?? ?? ?? 63 6D 64 20

 C7 85 ?? ?? ?? ?? 2F 63 20 22

 C7 85 ?? ?? ?? ?? 6E 65 74 20

 C7 85 ?? ?? ?? ?? 75 73 65 72

 C7 85 ?? ?? ?? ?? 20 63 65 73

 C7 85 ?? ?? ?? ?? 73 75 70 70

 C7 85 ?? ?? ?? ?? 6F 72 74 20

 C7 85 ?? ?? ?? ?? 31 71 61 7A

 C7 85 ?? ?? ?? ?? 23 45 44 43

 C7 85 ?? ?? ?? ?? 20 2F 61 64

 C7 85 ?? ?? ?? ?? 64 20 26 26

 C7 85 ?? ?? ?? ?? 20 6E 65 74

 C7 85 ?? ?? ?? ?? 20 6C 6F 63

 C7 85 ?? ?? ?? ?? 61 6C 67 72

 C7 85 ?? ?? ?? ?? 6F 75 70 20

 C7 85 ?? ?? ?? ?? 61 64 6D 69

 C7 85 ?? ?? ?? ?? 6E 69 73 74

 C7 85 ?? ?? ?? ?? 72 61 74 6F

 C7 85 ?? ?? ?? ?? 72 73 20 63

 C7 85 ?? ?? ?? ?? 65 73 73 75

 C7 85 ?? ?? ?? ?? 70 70 6F 72

 C7 85 ?? ?? ?? ?? 74 20 2F 61

 C7 85 ?? ?? ?? ?? 64 64 22 00

 6A 5C

 }

 /*

 0x41be22L C745D057696E45 mov dword ptr [ebp - 0x30],

0x456e6957

 0x41be29L C745D478656300 mov dword ptr [ebp - 0x2c],

0x636578

 0x41be30L C7459C47657450 mov dword ptr [ebp - 0x64],

0x50746547

 0x41be37L C745A0726F6341 mov dword ptr [ebp - 0x60],

0x41636f72

 0x41be3eL C745A464647265 mov dword ptr [ebp - 0x5c],

0x65726464

 0x41be45L C745A873730000 mov dword ptr [ebp - 0x58],

0x7373

 0x41be4cL C745C443726561 mov dword ptr [ebp - 0x3c],

0x61657243

 0x41be53L C745C874654669 mov dword ptr [ebp - 0x38],

0x69466574

 0x41be5aL C745CC6C654100 mov dword ptr [ebp - 0x34],

0x41656c

 0x41be61L C745B857726974 mov dword ptr [ebp - 0x48],

0x74697257

 0x41be68L C745BC6546696C mov dword ptr [ebp - 0x44],

0x6c694665

 0x41be6fL C745C065000000 mov dword ptr [ebp - 0x40],

0x65

 0x41be76L C745AC436C6F73 mov dword ptr [ebp - 0x54],

0x736f6c43

 0x41be7dL C745B06548616E mov dword ptr [ebp - 0x50],

0x6e614865

 0x41be84L C745B4646C6500 mov dword ptr [ebp - 0x4c],

0x656c64

 0x41be8bL 894DE8 mov dword ptr [ebp - 0x18],

ecx

 */

 $chunk_3 = {

 C7 45 ?? 57 69 6E 45

 C7 45 ?? 78 65 63 00

 C7 45 ?? 47 65 74 50

 C7 45 ?? 72 6F 63 41

 C7 45 ?? 64 64 72 65

 C7 45 ?? 73 73 00 00

 C7 45 ?? 43 72 65 61

 C7 45 ?? 74 65 46 69

 C7 45 ?? 6C 65 41 00

 C7 45 ?? 57 72 69 74

 C7 45 ?? 65 46 69 6C

 C7 45 ?? 65 00 00 00

 C7 45 ?? 43 6C 6F 73

 C7 45 ?? 65 48 61 6E

 C7 45 ?? 64 6C 65 00

 89 4D ??

 }

 condition:

 any of them

}

