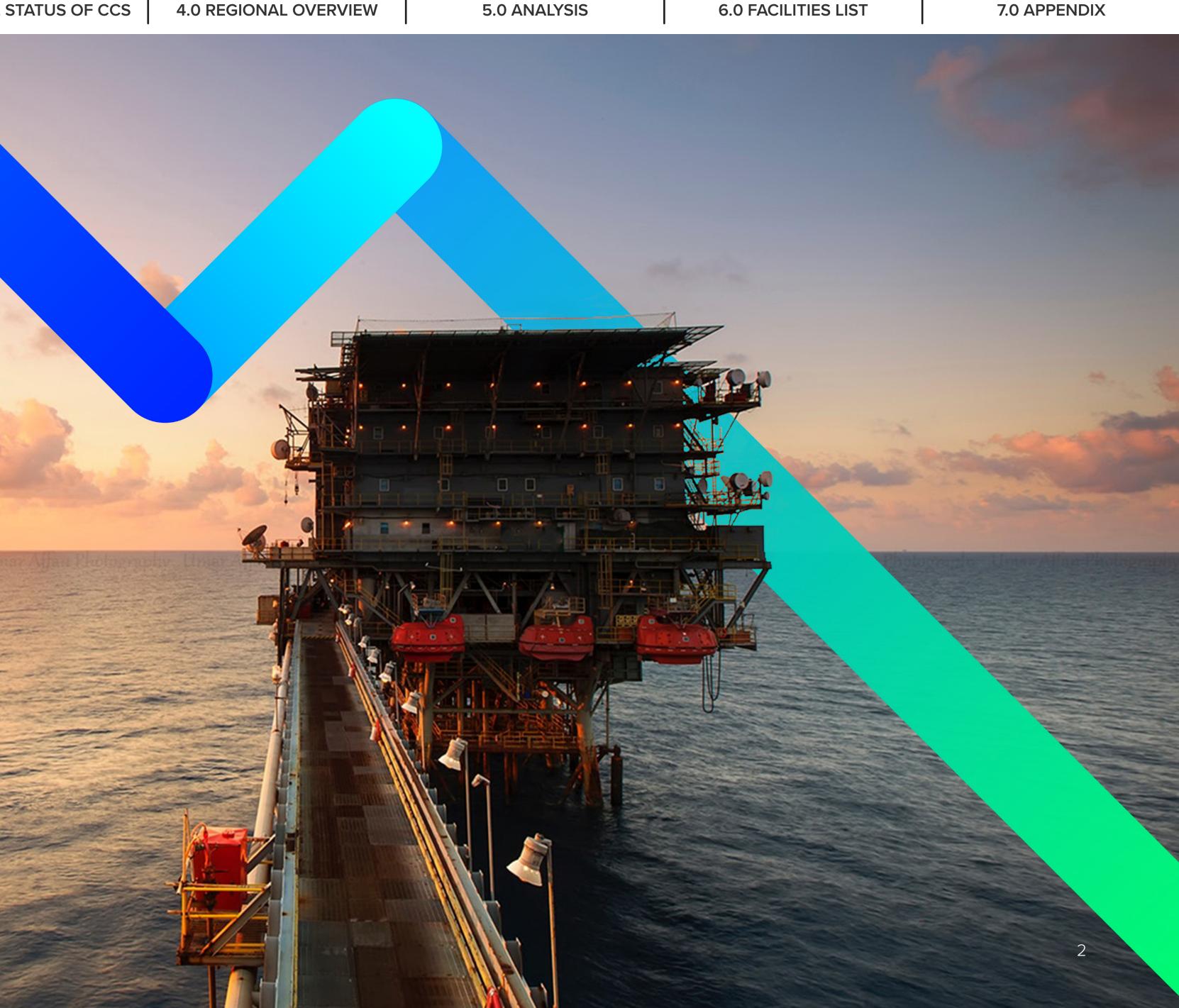
GLOBAL STATUS OF CCS 2023 SCALING UP THROUGH 2030

and the start of t

ABOUT THE REPORT


This report documents the milestones for carbon capture and storage over the past 12 months, as it is increasingly adopted globally, and defines the key opportunities and challenges for the coming years.

The data is provided to inform and help accelerate deployment of this proven emissions reduction technology as an integral part of meeting global climate targets. We hope it will be read and used by governments, policymakers, academics, media commentators and the millions of people who care about our climate.

About us

The Global CCS Institute is a leading international carbon capture and storage (CCS) think tank. Our mission is to accelerate the global deployment of CCS as an integral part of tackling climate change and delivering climate neutrality.

Our more than 200 international members include governments, companies, research bodies and NGOs, all with a commitment to CCS as part of achieving a net-zero future. We have resources in Washington DC, New York, Houston, London, Paris, Brussels, Abu Dhabi, Beijing, Kuala Lumpur, Melbourne, Perth, Brisbane and Tokyo.

5.0 ANALYSIS

6.0 FACILITIES LIST

CONTENTS

1.0	FROM THE CEO		
2.0	SCALING UP THROUGH 2030		
2.1	Scaling Up Through 2030		
3.0	GLOBAL STATUS OF CCS		
3.1	Global Facilities and Trends		
3.2	International Policy, Legal		
	and Regulatory Developments		
3.3	Status of CCS Financing		
4.0	REGIONAL OVERVIEW		
4.1	Americas 2		
4.2	Asia Pacific		
4.3	Europe & UK		
4.4	Middle East & Africa		
5.0	ANALYSIS		
5.1	The Value of CCS in a Net-Zero World		
5.2	Drivers of CCS Investment		
5.3	CCS Business Models and Trends		
5.4	Global Transport Methods		
5.5	Managing Long-Term Liability		
5.6	Storage Resource Development Progress		
6.0	FACILITIES LIST		
2023	3 Facilities List		
7.0	APPENDIX		
Acro	nyms		
References			

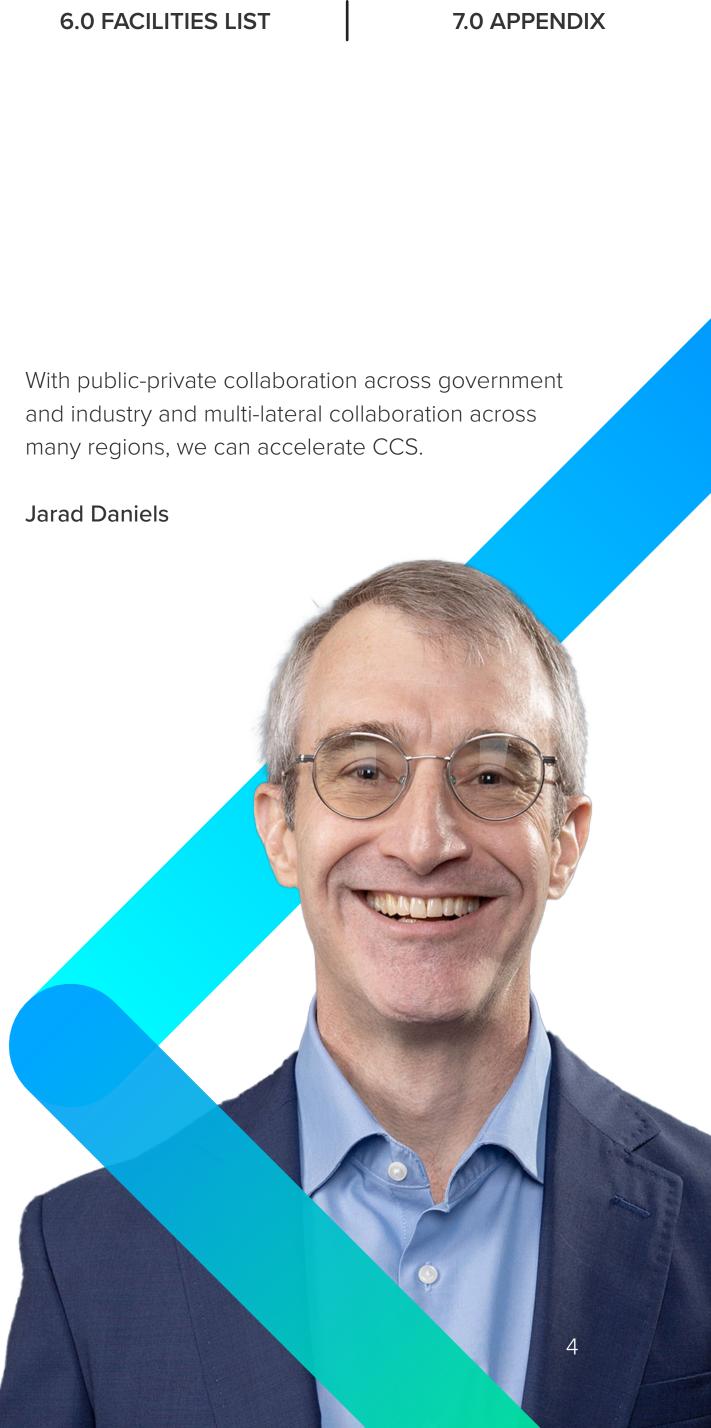
1.0 FROM THE CEO

The climate math is clear: carbon capture and storage (CCS) and carbon dioxide removal (CDR) must scale up to gigatonnes per annum to mitigate climate change and reach net-zero emissions.

The growing urgency to address climate change felt by policy makers, industry leaders, investors and the general public is now accelerating CCS deployment in many regions around the globe. World-leading climate and energy analysts maintain CCS and CDR are key pillars needed this decade to keep within reach the Paris Agreement's target of pursuing efforts to limiting the global temperature rise to 1.5 °C.

We have seen significant progress on CCS since last year's 2022 Global Status of CCS report, spurred by government policies in North America and Europe set forward to catalyse all forms of climate change mitigation.

In the United States alone, federal policy is unlocking the potential for hundreds of million tonnes per annum (Mtpa) of CCS deployment this decade. Support for CCS in Denmark is an example of how quickly and strongly enabling policies can be developed and implemented with strong public support.

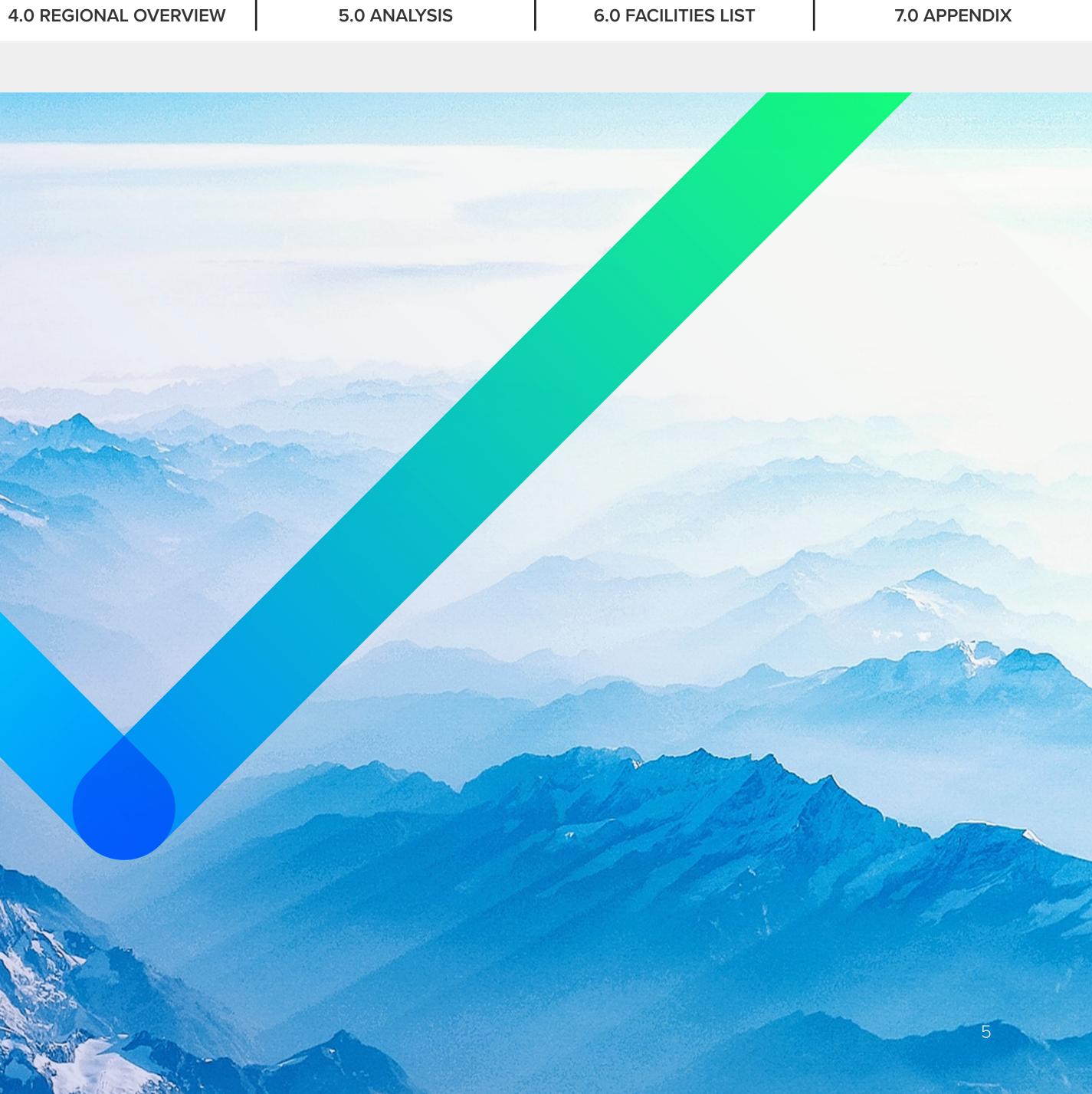

The Global CCS Institute is now tracking 41 projects infrastructure can provide economies of scale and in operation and 351 in development globally, leverage synergies between point source carbon with new projects being announced weekly. The capture and carbon dioxide removal. It can shorten growing interest from CCS project developers is permitting timelines and create efficiencies during now palpable in many regions, across industries both development and operation. and in diverse applications.

The financial sector and investors are actively looking to include CCS in their sustainable It is exciting to see so many projects progressing in many regions around the globe, including major development portfolios and investments. We are working with the financial community projects in North America, the Jubail hub in Saudi to include CCS in regulatory and reporting Arabia with the first phase operational by 2027, and requirements to address this growing interest. the first major CO₂ pipeline in China. We are seeing accelerating progress at a project level in the Middle East and North Africa, Australia and Asia. Global collaboration on CCS has never been

stronger. We support the Carbon Management CCS networks (sometimes also referred to as Challenge championed by the United States hubs and clusters) are growing and we are tracking and a growing coalition of countries, which approximately 115 networks globally. Shared common aims to deliver gigatonne scale CCS by 2030 – consistent with the climate math and models. On behalf of our Members, the Global CCS Institute is working hard to help speed deployment of The Global CCS Institute is now this critical climate change mitigation technology through our advocacy, thought leadership, and tracking 41 projects in operation and knowledge-sharing efforts.

351 in development globally, with new projects being announced weekly.

I am encouraged by the exponential growth of enabling policies, projects, and collaborative activities we are witnessing on CCS globally.

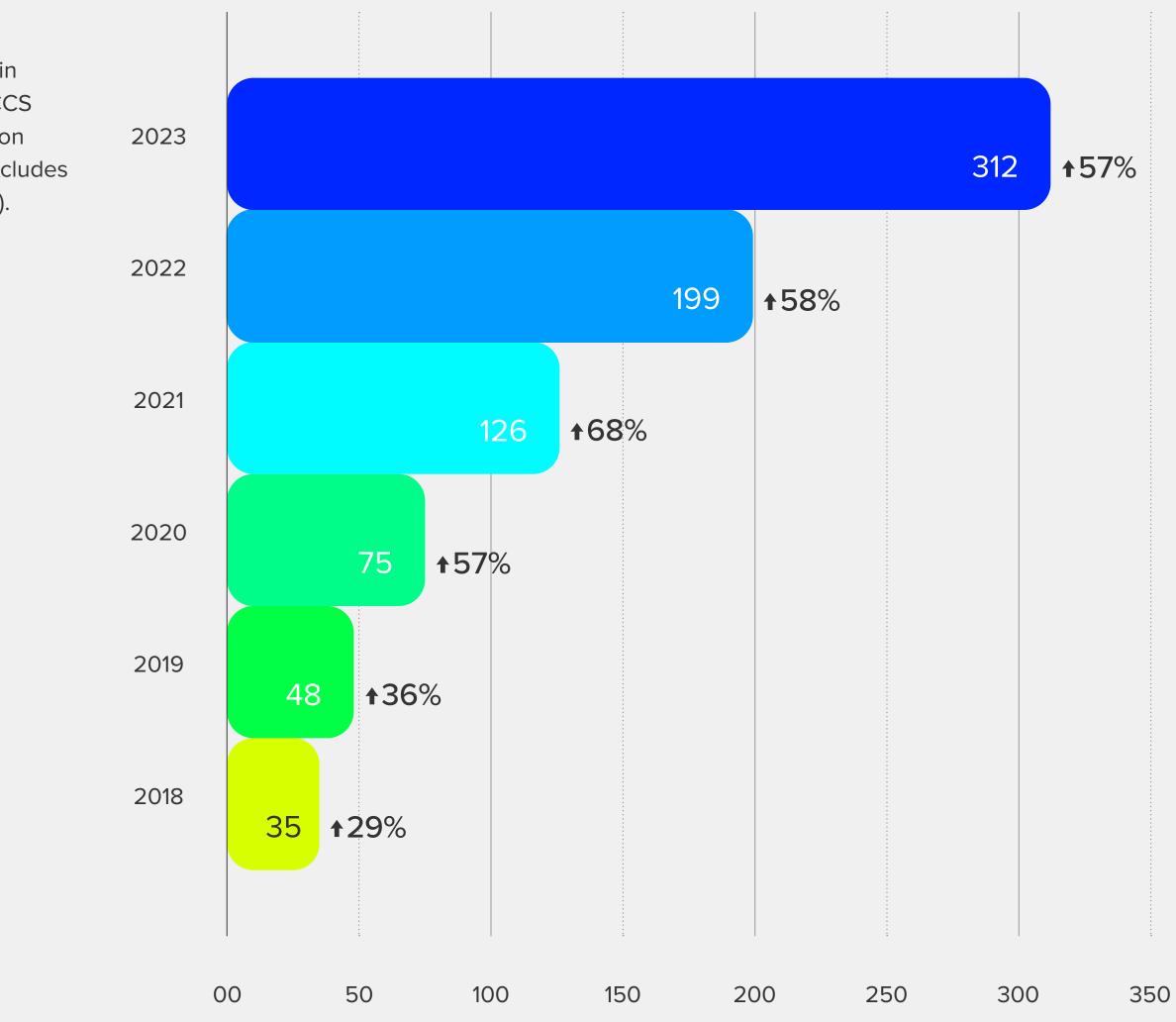


Mar-

2.1 SCALING UP THROUGH 2030

2.0 SCALING UP THROUGH 2030

2.1 SCALING UP THROUGH 2030


Carbon capture and storage is beginning to scale up, and the CCS project pipeline has reached an unprecedented capacity. As of 31 July 2023, the total CO₂ capture capacity of CCS projects (in the public domain) in development, construction and operation was 361 Mtpa, an increase of almost 50% compared to that reported in the 2022 Global Status of CCS report.

Considering just CCS projects in construction and development, the rate of growth has remained high, as shown in Figure 2.1–1.

In addition to the headline statistics noted in Figure 2.1–1, the diversity of industries to which CCS is being applied has increased significantly over the past several years, demonstrating its role in supporting net-zero ambitions.

Figure 2.1–1:

Year-on-year growth in capture capacity of CCS projects in construction and development (excludes capacity in operation).

Capture capacity of CCS projects in construction and development (Mtpa CO₂)

The last 12 months have seen a significant increase in equity financing and interest in project finance for CCS projects. Many businesses seeking to profit from the provision of CCS services, especially in the transport and/or storage of CO₂, are now emerging on the back of decades of government-sponsored research, development, and deployment, industry net-zero commitments, and expectations of more stringent climate policy.

CCS is also becoming a more prominent feature of public policy, from inclusion in a growing number of countries' Nationally Determined Contributions (NDCs) to the provision of targeted policy to drive deployment and the drafting of appropriate regulations. International CCS business models are being developed, with the first transboundary movement of CO₂ by ship for geological storage completed between Belgium and Denmark in 2023.

There have been very significant policy developments in the last few years that have enabled the potential of CCS project investment to accelerate.

These are all encouraging indicators of progress. amongst the financing community, facilitating However authoritative analysis by the International closer interaction between capture customers Energy Agency, the Intergovernmental Panel on and infrastructure providers and enhancing public Climate Change, and others consistently indicates and community engagement, education, and that achieving global climate targets will require communication would ensure projects successfully annual CO₂ storage rates of approximately 1 Gtpa progress through FID and construction. by 2030, growing to around 10 Gtpa by 2050. A critical question given where we are today is: Is this level of scale-up feasible?

Analysis from the Institute and other organisations demonstrate that whilst there are credible pathways for scaling up CCS deployment to keep the world on track for the goals of the Paris Agreement, this will require an ongoing and expanded commitment from governments and project developers, adoption of policy measures, and platforms that expand the CCS knowledge base to a wider audience of key stakeholders. Continued growth of the facility development pipeline, and ensuring projects in development proceed efficiently to final investment decision, construction and operation, are critical in the path to achieving the rates of deployment needed.

Supportive policies that underpin more robust carbon values, compelling and complementary tax incentives, and facilitating CO₂ transport and storage hubs to attract more local capture projects would help maximise the number of CCS projects entering the development pipeline.

In parallel, encouraging improved cross-learnings between projects, creating more support for CCS

5.0 ANALYSIS

Thankfully, there have been very significant policy developments in the last few years that have enabled the potential of CCS project investment to accelerate, as described in the regional sections of this report. For example:

- In the EU, the Net-Zero Industry Act aims to have 50 Mtpa of CO_2 storage developed by 2030.
- The UK's CCUS Net Zero Investment Roadmap foresees 20 to 30 Mtpa of CCS capacity installed by 2030.
- Analysis of the impact of the US Inflation Reduction Act concludes that it could increase CCS deployment in the US by 200 to 250 Mtpa of CO₂ by 2030.
- Japan's CCS Long-Term Roadmap announced in January 2023 sets a target for the first commercial facilities to commence operation by 2030 on a trajectory towards 240 Mtpa CO₂ stored by 2050.
- Saudi Arabia has announced a target of capturing and storing 44 Mtpa CO_2 by 2035.

In addition, more stringent general climate policy and regulation is sending a very clear signal that the world is looking to expeditiously decarbonise across all sectors. The entry into force of the European Carbon Border Adjustment Mechanism and reform of the EU Emissions Trading System (EU ETS) to achieve a 55% reduction in emissions by 2030, and the commencement of the reforms to the Australian Safeguard Mechanism, requiring 4.9% year on year reduction in emissions from covered facilities over the next 5 years, are examples.

We are now seeing a rapid escalation in the development of new CCS projects, although relatively few have yet advanced to operation. Given projects typically take 7 years or more to develop, the lag between projects in development and projects entering operation is not surprising.

The impact of these recent developments is expected to be a sustained increase in the number of CCS projects in development, and a greater proportion of them successfully progressing to construction, especially when compared with the decade between 2010 and 2020. That decade was characterised by cost discovery through studies and the subsequent cancellation or delay in project developments due to economic non-viability. Now there are far fewer cost surprises and policy drivers are much stronger. The game has changed.

However, recent growth in CCS project capacity has been concentrated in North America and Europe where supportive policy and/or carbon pricing is the strongest. These jurisdictions have also promulgated comprehensive CCS regulation. Together, they have demonstrated how sound policy and regulation can rapidly increase investment in CCS. Growing the CCS project pipeline to the level required to capture 10 Gtpa CO₂ per year by the middle of this century will require strong growth in all jurisdictions, not just Europe and North America.

This, in turn, will require similar policies and regulation to those in place in Europe and North America to be commonplace around the world. Further, the rate of development of geological storage resources is not keeping pace with potential future demand, even in leading jurisdictions and especially in Europe. Unless dedicated programs are put in place to identify and appraise geological storage, sufficient capacity may not be available when required.

Stronger policy, targeted programs to develop storage resources and the promulgation of fit-forpurpose regulation of CCS in more jurisdictions including the Global South are essential within the next decade to ensure that CCS can scale up though 2030 to 2050 and beyond.

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

1.0 FROM THE CEO

2.0 SCALING UP THROUGH 2030

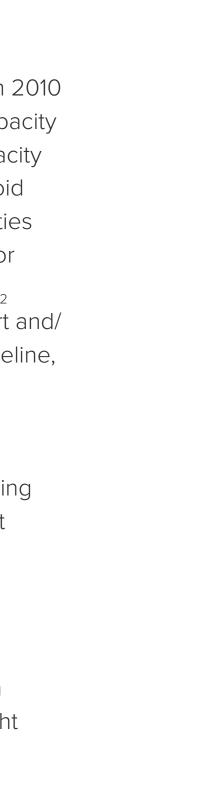
3.0 GLOBAL STATUS OF CCS

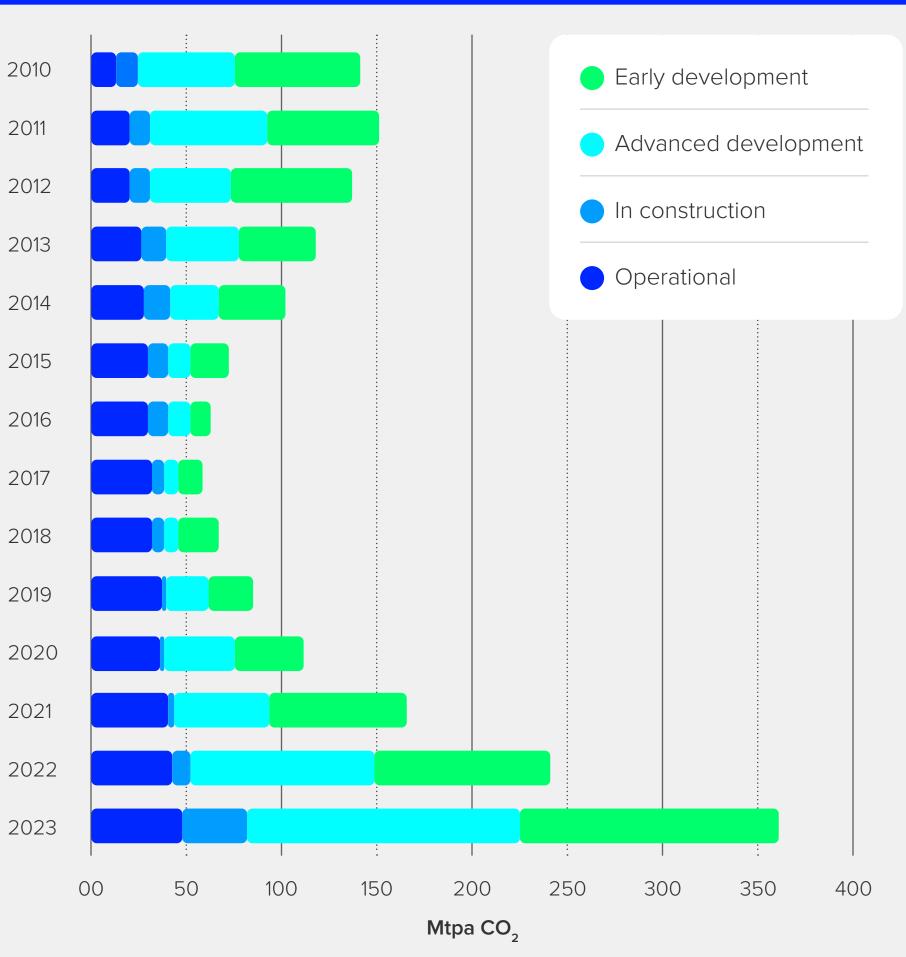
3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

3.0 GLOBAL STATUS OF CCS

3.1 GLOBAL FACILITIES AND TRENDS

The number of CCS facilities in the development pipeline has increased significantly in 2023, with 11 new facilities commencing operations and 15 new projects in construction. As of July 2023, there are 392 projects in the pipeline, representing a 102% year-on-year increase.


The project pipeline in terms of facility numbers and capacity is at an all-time high. Since 2017, capture capacity has grown at a compound rate of more than 35% per annum. This has accelerated in the last 12 months; capture capacity increased 50% from 2022 – the highest increase since the upward momentum started in 2018.


year-on-year increase in number of CCS facilities in development pipeline. Figure 3.1–1 shows the increase in capacity from 2010 to 31 July 2023. This figure, and the capture capacity reported in Figure 3.1–1, do not include the capacity of CO_2 transport and/or storage projects, to avoid double counting. However, the number of facilities in Figure 3.1–1 does include CO_2 transport and/or storage facilities that do not have their own CO_2 capture source. As of 31 July 2023, 101 transport and/ or storage projects were in the deployment pipeline, in construction or operational.

Capture capacity in all stages of project development has increased significantly, including a 47% increase in both Advanced Development and Early Development projects. Projects that have received significant funds for engineering development, are demonstrating a higher level of commitment, and have a higher probability of moving to funding approval and construction are included in "Advanced Development". In light of this, an increase of 47% is significant. **5.0 ANALYSIS**

6.0 FACILITIES LIST

Figure 3.1–1: Capacity of commercial facility pipeline since 2010

Figure 3.1–2:

Commercial CCS facilities by number and total capture capacity of 31 July 2023; total for 2022 shown for comparison.

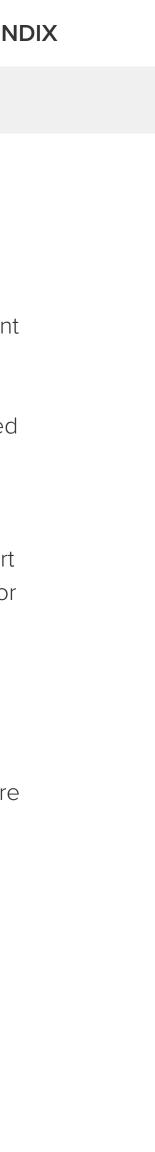
Early development Advanced development In construction Operational

Note: The 2022 Global Status of CCS report stated a total capture capacity of approximately 244 Mtpa including the capacity of facilities that had suspended capture operations. Suspended capacity is no longer included in these statistics and thus the 2022 capacity has been revised down slightly.

Number of facilities

7.0 APPENDIX

361 135 241 144 32 **49** Total 2022 Total 2023


Capture capacity (Mtpa)

Historically, a CCS facility was vertically integrated - a single CO₂ capture plant with dedicated CO₂ compression, pipeline and storage systems. However, CCS networks are becoming the dominant mode of CCS deployment.

CCS networks involve capture plants utilising shared transport and storage infrastructure. Many CO₂ transport and storage facilities in the deployment pipeline are not associated with a specific CO_2 capture source. However, those same CO₂ transport and storage facilities still have a design capacity. For example, a storage site will announce its maximum annual injection rate, which will be reported as its capacity. Including the CO_2 flow capacity of these CO₂ transport and storage facilities along with the capacity of the CO_2 capture plants that will utilise them would result in double counting of CO₂ capture and storage capacity.

Since 2022, the Global Status of CCS reports have used only the maximum CO₂ capture design capacity in their reporting. This method avoids double counting while ensuring compatibility with our historical capacity statistics. Facility pipeline charts and figures are now explicitly referred to by "Capture Capacity", a change from the pre-2022 title of "Capacity of CCS Facilities". Dedicated CO₂ transport and storage facilities are still counted in total facility numbers but will not contribute to global CCS capacity.

The CCS facilities' capture, transport and storage capacity is detailed in Section 6.

Industry developments

Transport and storage networks

CCS deployment through networks has become the dominant pathway as networks deliver economies of scale that reduce cost and business model synergies that reduce risk. Capture hubs and transport networks are being developed to service regional CO₂ sources. These sources are typically less than 1,000 km from the storage resource but may be significantly further where the scale and project economics allow, particularly where the main transport mode is by ship.

These hubs and networks establish shared CO₂ storage infrastructure for permanent CO₂ storage. Modelling suggests that up to 4.2 Gtpa of CO₂ could be captured and stored by establishing 160 hubs globally at costs of less than \$85 per tonne of CO_2 . It is clear the development of CCS networks and hubs is critical, since storage of around 10 Gtpa of CO_2 is required to achieve net zero emission targets by mid-century.

As global CCS policy and regulation develop and funding support increases, companies can be expected to build positions in CCS networks to take advantage of economies of scale and reduced cost. To date in 2023, there have been three key CCS merger and acquisition transactions – the Chevron-Talos-Carbonvert deal in the US; E.ON-Horisont's Energi deal in Europe and ExxonMobil Corporation acquiring Denbury Inc. for its CO₂ transport and storage facilities.

There has seen the proliferation of CCS networks in 2023. The ongoing development of CCS networks has resulted in a new industry category of "CO₂ transport and storage" facilities. In 2023, 101 of these facilities were identified globally.

These stand-alone facilities represent a new CCS industry model. The facilities are not aligned to any other industries, which to date were defined by their capture source. Examples of these multi-user, multiindustry CO₂ transport and storage facilities include:

- Wolf 's Alberta Carbon Trunk Line CO₂ compression and pipeline in Canada, operating since 2020.
- CarbonNet in Australia, a CO₂ storagefocused facility.
- CarbFix CODA CO₂ transport and storage, shipping CO₂ from across Europe before storing the CO_2 through mineral carbonation.
- The Northern Lights open-source transport and storage network in Norway, aiming to be operational in 2024 and storing 0.8 Mtpa of CO₂ from a cement plant in Brevik and a waste plant in Oslo (phase 1) deep under the seabed in the North Sea. In May 2023, the project signed another cross-border deal with Ørsted to transport and store a further 430,000 tpa from two power plants in Denmark.

5.0 ANALYSIS

6.0 FACILITIES LIST

ndustries hosting CCS facilities	ndustries	hosting	CCS	facilities
----------------------------------	-----------	---------	-----	------------

Focussing on the capture source of emissions, the ethanol industry has the second largest number of facilities at 70. Two major US ethanolfocused CCS networks are Summit's Mid West Express with 36 plants and Navigator's Heartland Greenway with 18 plants.

count of facilities by industry at 53, followed by hydrogen/ammonia/fertiliser (50). Natural gas processing, which historically was a primary industry for CCS, completes the 2023 top five industries with 45 facilities.

Power generation and heat is the third largest

Away from these five industries, cement was the fastest-growing industry at 22 facilities, dominated by European plants. Finally, there are now six commercial direct air capture plants in the pipeline.

CCS development highlights

10.6 Mtpa

The world's largest operating project, Petrobras Santos Basin Pre-Salt Oil Field, has a capture capacity of 10.6 Mtpa dedicated CO₂

5

New facilities in operation in China

New funding for seven CCS networks in Japan

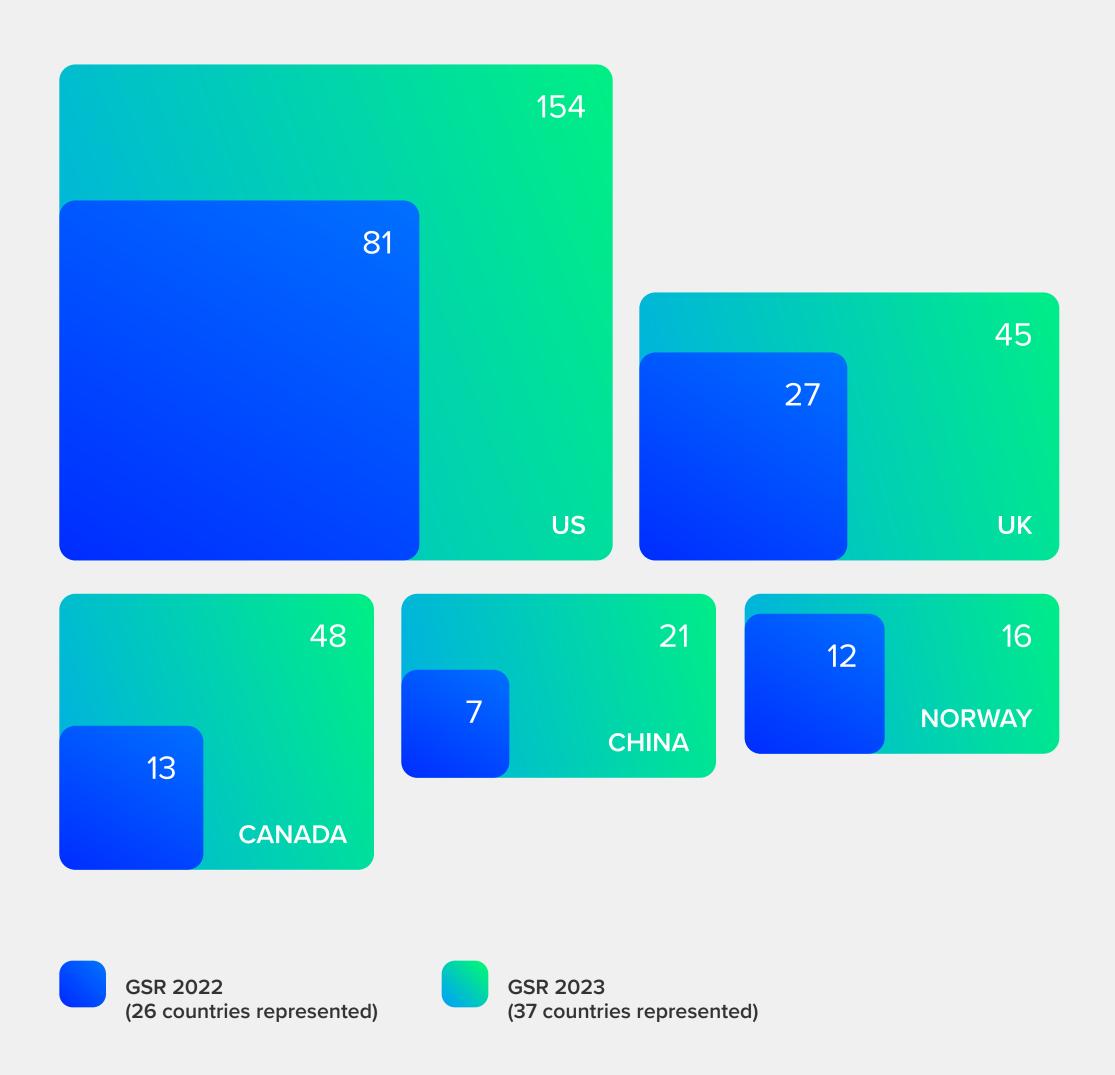
曲

X

Top 2 applications by the number of facilities – ethanol, power generation and heat

4.0 R

3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY



5.0 ANALYSIS

6.0 FACILITIES LIST

Figure 3.1–4:

Top five countries with CCS projects in the pipeline in 2023 vs 2022; the US, UK, Canada, China and Norway

Country and regional developments

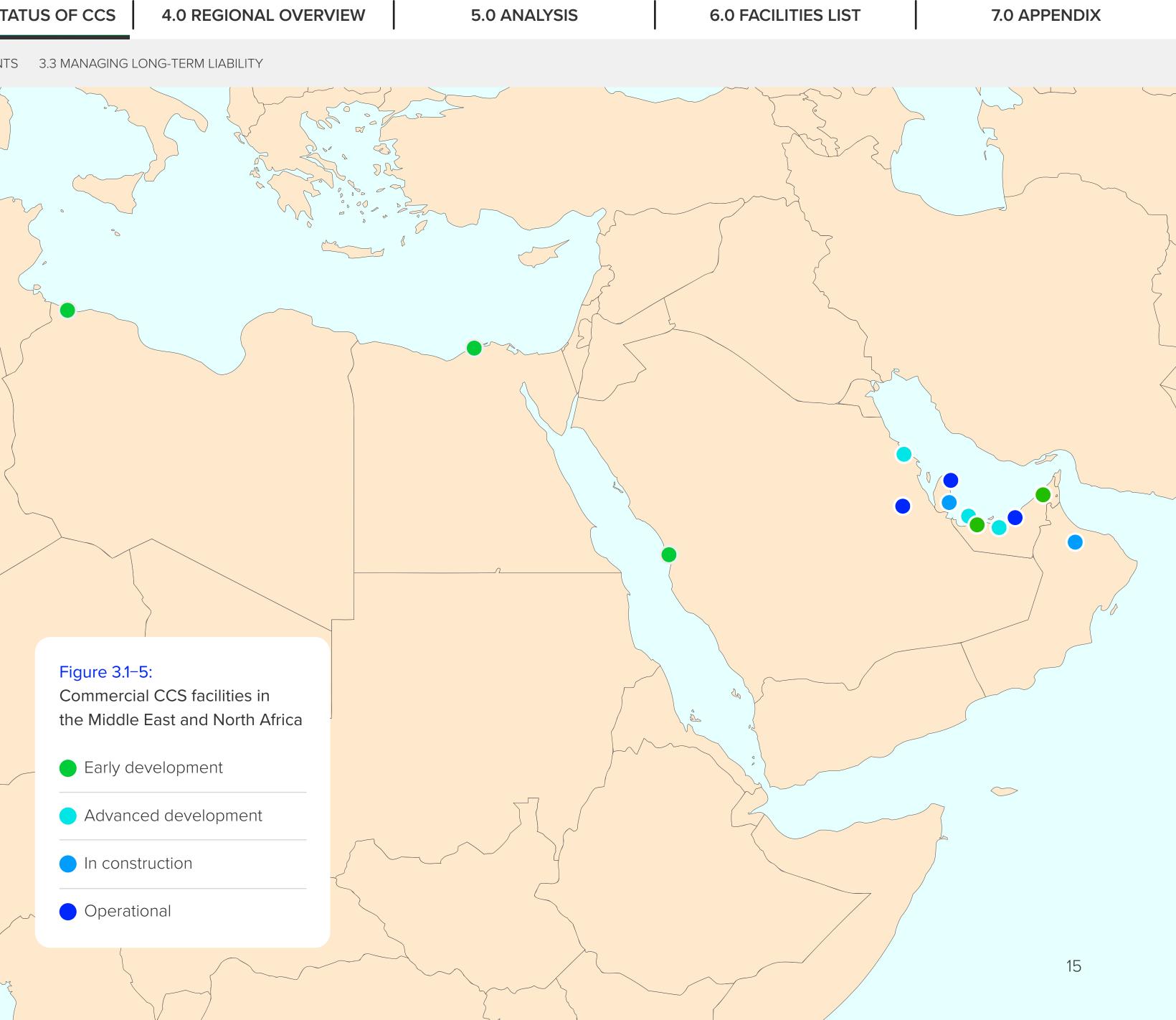
The CCS facility developments over the past year are far too numerous to summarise here. However some examples are mentioned below to illustrate the broad scope and scale of CCS projects in development:

- Saudi Arabia: Jubail Industrial City, one of the world's largest CCUS hubs, will start operating by 2027 with a capacity of up to 9 Mtpa of CO_2 in its first phase, supporting Saudi Arabia's aim to extract, use and store 44 Mtpa of CO_2 by 2035.
- China: Three projects became operational in 2023 – Asia's largest coal-power plant CCS facility, the first offshore CO₂ storage facility, and carbon capture at an oil refinery. China now hosts 11 operating facilities including its first commercial-scale CO₂ transport pipeline (part of the Sinopec Qilu-Shengli facility).
- The US: Construction commenced on the first large-scale DAC project, STRATOS, and operations are planned to start in 2025. The project aims to capture up to 500,000 tonnes of CO_2 per year.

- Japan: Announced support for seven CCS networks that will capture CO₂ in Japan for storage in the offshore waters off Japan and in the wider Asia-Pacific region.
- Greece: Announced five facilities as part of the Prinos CCS network with natural gas, cement and hydrogen plants to access their CO₂ transport and storage infrastructure.

The growth in the number of CCS facilities announced and in development worldwide indicates that the technology is becoming attractive as countries and companies work to achieve their climate commitments on a shrinking carbon budget.

Between 2022 and 2023, 11 new countries registered CCS facilities in various stages of development. The US still dominates CCS deployment, with 73 new facilities entering the pipeline in 2023. The UK, Canada and China increased their facility counts and remained in the top five CCS deployment countries. The Netherlands has been replaced by Australia, which now has 12 facilities in development. In 2022, Japan and Greece had no commercial facilities but now host seven and five, respectively in 2023.

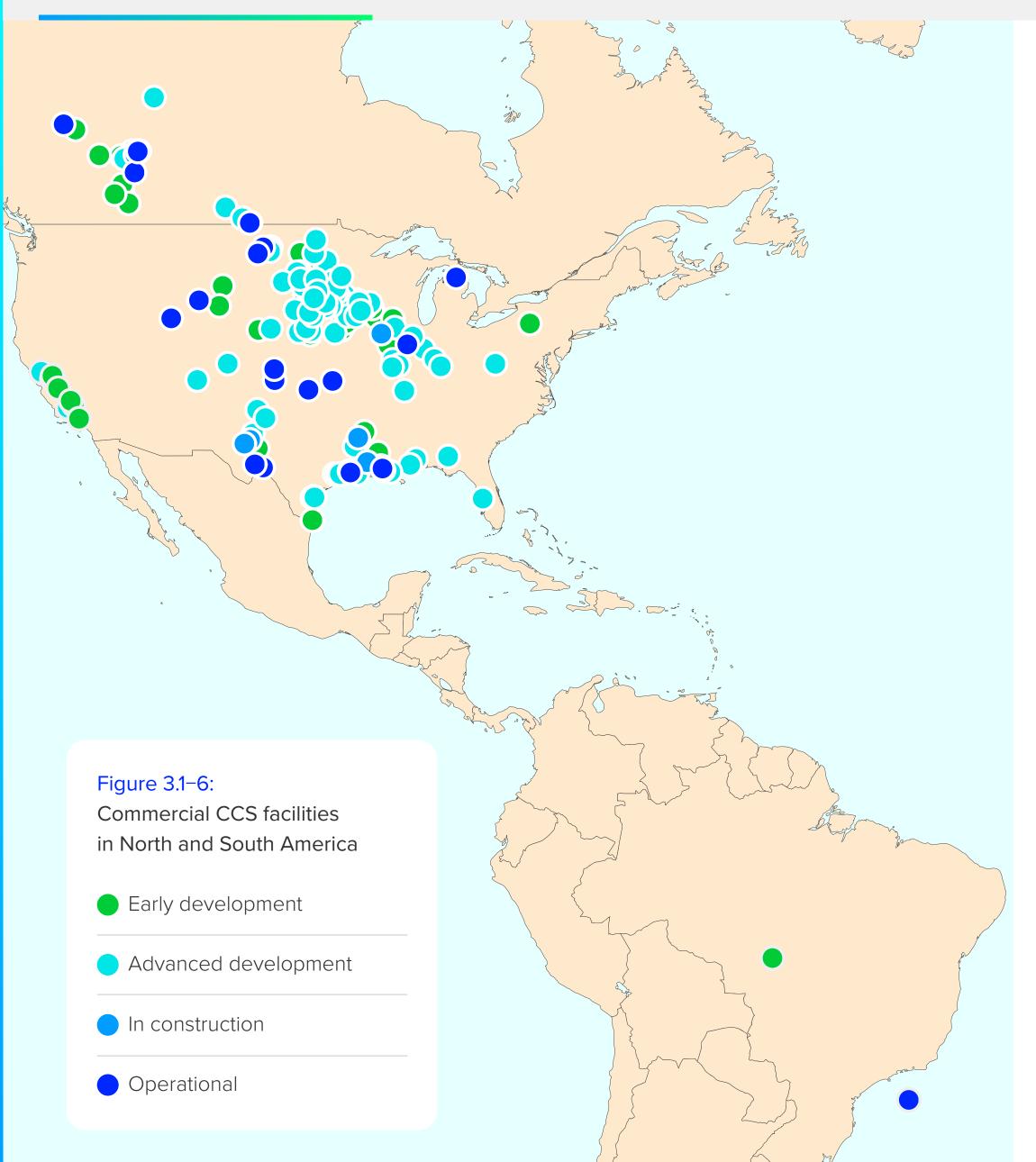


2

3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

Middle East and Africa

Three CCS facilities are operational in the Middle East, with three in construction, and three in advanced development. Six CCS facilities in this region are associated with the natural gas processing industry.



1.0 FROM THE CEO

2.0 SCALING UP THROUGH 2030

3.0 GLOBAL STATUS OF CCS

3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

5.0 ANALYSIS

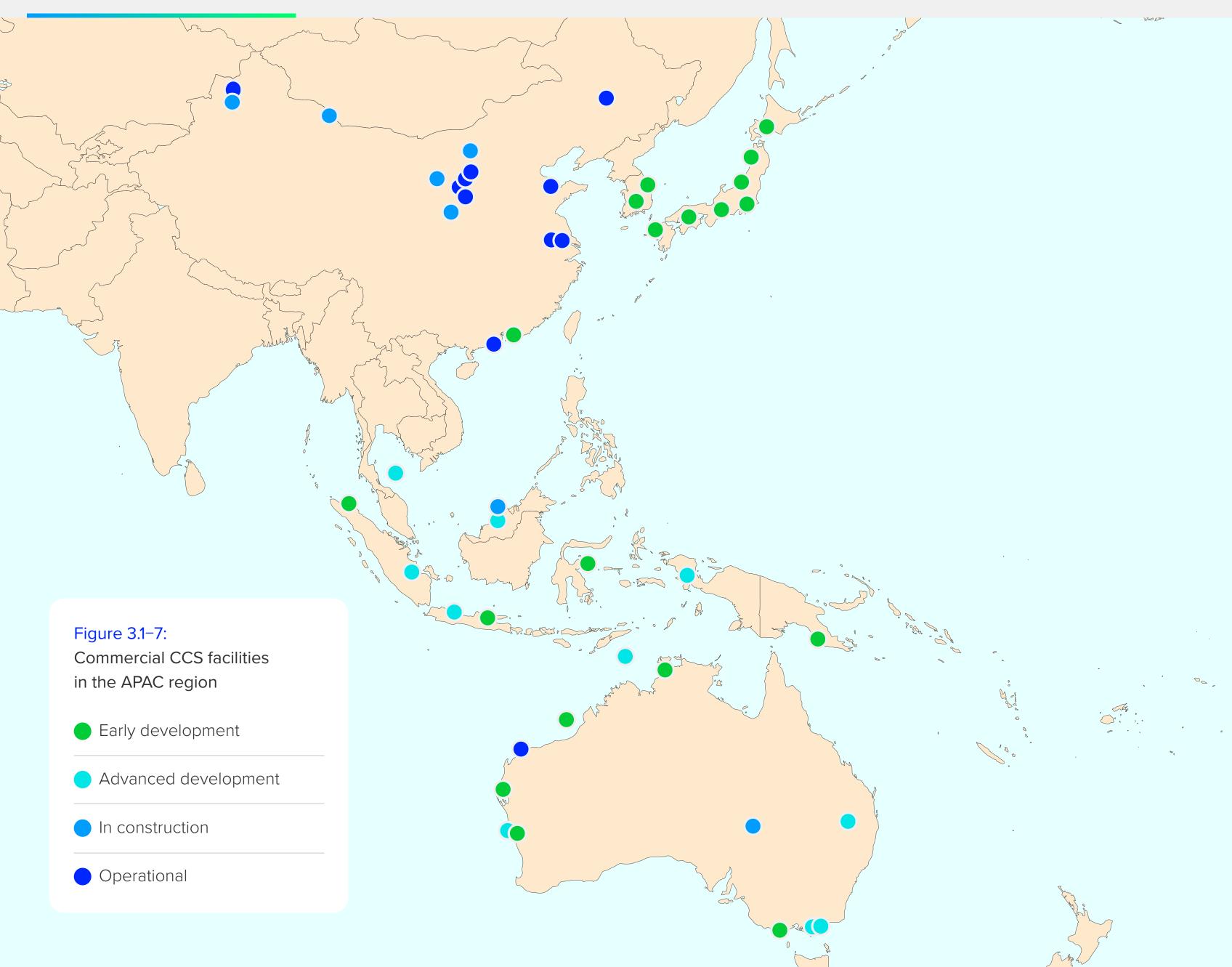
6.0 FACILITIES LIST

North America

In the US and Canada, the ethanol industry hosts the most CCS facilities (69) in operation, construction or development. CO₂ transport and storage facilities are the second most prolific industry with 48 facilities in the pipeline. CCS is gaining momentum in ammonia, hydrogen and fertiliser production, as well as power generation and heat, with 25 and 28 projects respectively across the project pipeline or in operation. Natural gas processing accounts for 16 CCS projects. Overall, 21 CCS facilities are operational in this region, nine in construction, 80 in advanced development and an additional 92 in early development.

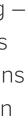
South America

The world's largest operating CCS facility is in the natural gas processing industry; the Petrobras Santos Basin Pre-Salt in Brazil. Operating in over 2,000 m water depth, the facility is currently capturing 10.6 Mtpa and re-injecting the CO_2 for enhanced oil recovery. In 2022, 40.8 Mt of CO_2 had been cumulatively reinjected.



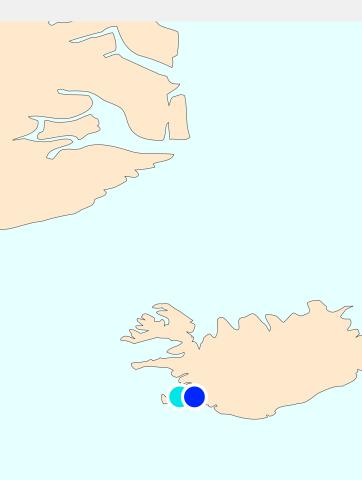
3.0 GLOBAL STATUS OF CCS

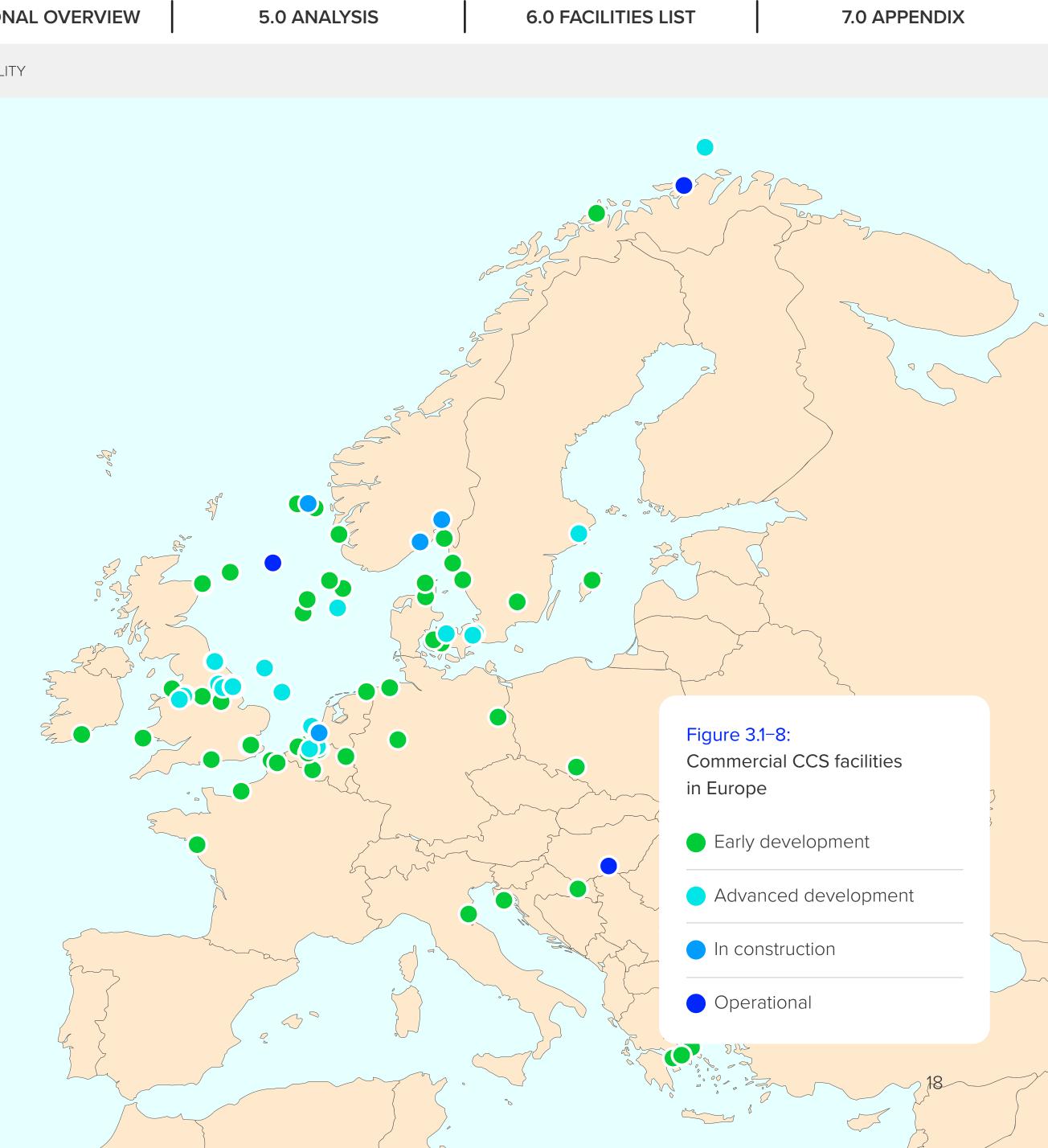
3.1 GLOBAL FACILITIES AND TRENDS IN 2023


3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

Asia Pacific

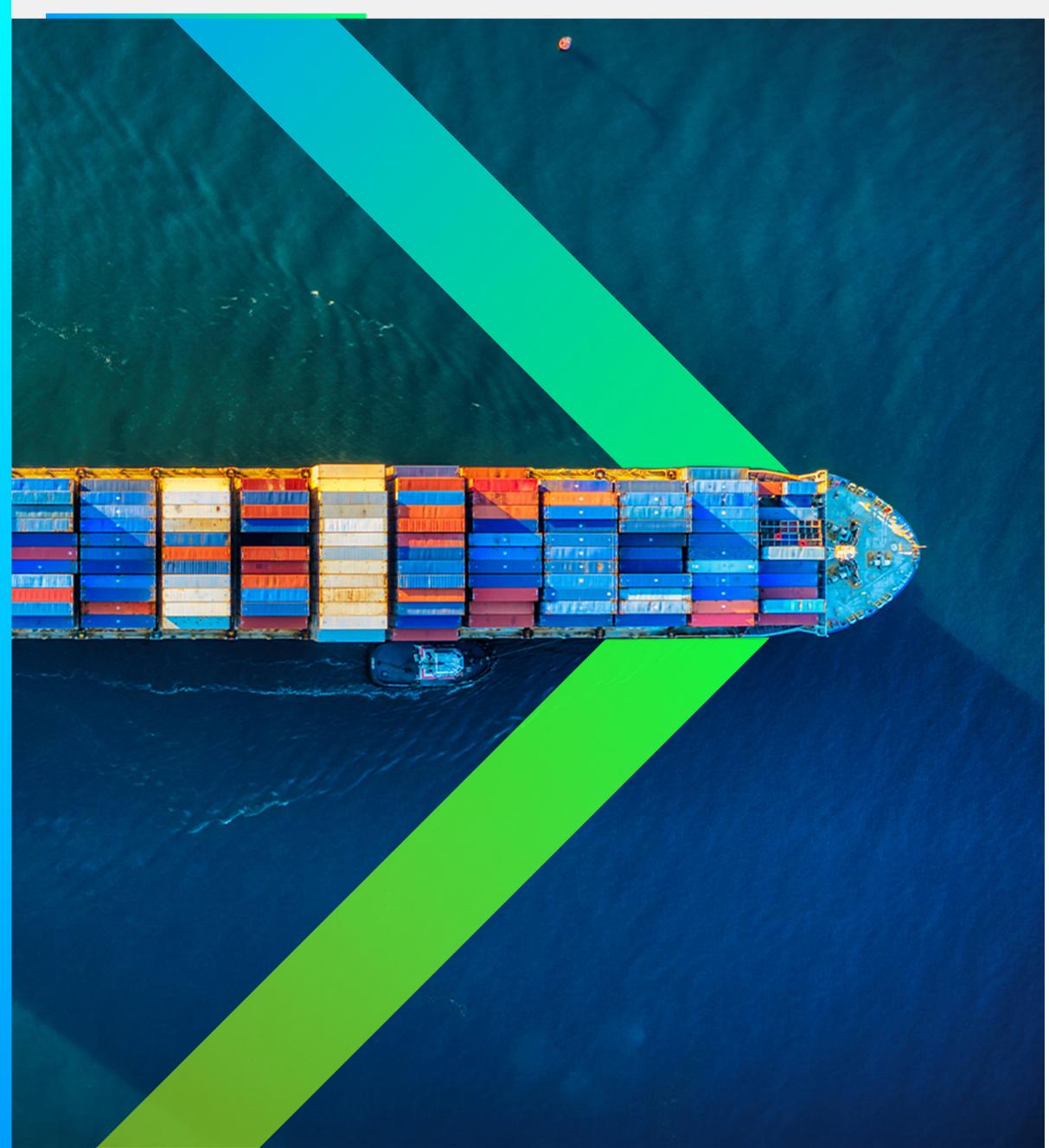
CO₂ transport and storage facilities under development (17) make up the largest category of facilities in the Asia Pacific region, followed by natural gas processing and chemical manufacturing – 15 and 10 facilities respectively. A total of 12 facilities are operational (five facilities commencing operations in 2022/23 in China), eight in construction, and 34 in advanced or early development.




3.0 GLOBAL STATUS OF CCS

3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

Europe


In Europe, 35 CO₂ transport and storage networks are in development. Other industries where CCS features prominently include hydrogen, ammonia and fertiliser facilities (20), power generation and heat (19 facilities), cement (17 facilities), and biomass to power/heat (15 facilities). Four facilities are operational, with six in construction and 109 in early or advanced development.

3.0 GLOBAL STATUS OF CCS

3.1 GLOBAL FACILITIES AND TRENDS IN 2023 3.2 INT POLICY LEGAL AND REGULATORY DEVELOPMENTS 3.3 MANAGING LONG-TERM LIABILITY

Developments in the shipping of liquified CO₂

As CO₂ networks gain momentum, CO₂ transport mechanisms are developing and maturing, including technologies for shipping liquefied CO_2 (LCO₂). Shipping companies are actively expanding their services into the shipping of LCO₂. Key activities over the past 12 months include:

- The Northern Lights project will be the first to transport LCO₂ by ship. In December 2022, Kawasaki Kisen Kaisha, Ltd. ("K" Line) signed longterm charter contracts with Northern Lights JV DA for two 7,500 m³ LCO₂ vessels. These vessels will start transporting LCO₂ from several CO₂ capture facilities, including Norcem Brevik and Hafslund Oslo Celsio, to the Northern Lights CO₂ receiving terminal in Øygarden, Norway in 2024.
- In June 2023, Knutsen NYK Carbon Carriers AS (KNCC), an affiliate of NYK, received the maritime industry's first General Approval for Ship Application (GASA) for an ambient temperature and elevated pressure containment system (the LCO₂-EP system) which can be fitted or retrofitted on vessels for transport of LCO_2 .

- In June 2023, Mitsui O.S.K. Lines, Ltd. (MOL), Malaysian state oil company PETRONAS and the Shanghai Merchant Ship Design & Research Institute (SDARI) acquired approval in principle from ship classification societies Det Norsk Veritas and the American Bureau of Shipping (ABS) for a jointly developed LCO₂ carrier. ABS also granted approval in principle for the companies' jointly developed floating storage and offloading unit.
- Also in June 2023, Mitsubishi Shipbuilding Co., Ltd. and Nippon Yusen Kabushiki Kaisha (NYK Line) were granted approval in principle from Japan's classification society, ClassNK, for the development of a ship that can simultaneously transport ammonia and LCO_2 .
- In July 2023, South Korea's HD Hyundai, through its Korea Shipbuilding & Marine Engineering arm, received its first order to build the largest LCO₂ carriers for Greece's Capital Maritime Group. The two vessels will each carry 22,000 m³ of LCO_2 and the first delivery will be in 2025.

3.2 INTERNATIONAL POLICY, LEGAL AND REGULATORY DEVELOPMENTS

Momentum grows for collective global action on CCS

The first half of 2023 saw significant strides toward global action on CCS. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Synthesis report re-stated the need for CCS to achieve the Paris climate goals.

The report concludes the 6-7 year reporting cycle and highlights CCS as a clear option in modelled pathways to limit global warming 1.5°C, with carbon dioxide removal from the atmosphere (CDR) to counterbalance residual emissions from the hard-toabate sector. With the next report scheduled to be published around 2030, the timing of IPCC AR6 is crucial for this critical decade for climate action.

Significantly, the report will inform the world's first Global Stocktake (GST) at the 28th Conference of the Parties (COP28) hosted by the UAE in Dubai from 30 November. The GST is designed to lay the foundation for countries to update their national climate action plans known as Nationally Determined Contributions (NDCs).

A highlight in global CCS collaboration was when the This involved day-long discussions that brought to US announced the Carbon Management Challenge at light shifting country perspectives on CCS, such as the Major Economies Forum (MEF) in April, inviting other from small island nations, which despite having no CCS opportunities within their borders see the value countries to join the challenge towards a collective of it in the implementation of the Paris Agreement. CCS/CDR target by 2030, with the aim of unveiling at COP28 a suite of concrete announcements and goals.

At the MEF meeting, leaders from Australia, Canada, Egypt, the European Union, Japan, Saudi Arabia, the UAE, Norway and Denmark joined in supporting the launch of this call to action. Sweden and Brazil joined the initiative in July during the 14th Clean Energy Ministerial in Goa, and more countries are expected to join. In tandem came the International Energy Agency (IEA) Credible Pathways to 1.5° report, which features carbon management as the fourth of the four pillars outlined for action this decade, with a 1.2 Gt of CO₂ storage target by 2030.

Shortly after the MEF meeting, the Group of 7 in a United Nations setting. Summit in Hiroshima Leaders' Communiqué heralded the most detail on CCS ever featured in a G7 leaders document, acknowledging that As the world anticipates the operationalisation of the technology is an important part of the broad the new international carbon market under Article 6, portfolio of decarbonisation solutions to reduce the year saw contentious discussions surrounding key documents that will dictate how CDR is handled emissions that cannot be avoided otherwise, with CDR to counterbalance residual emissions. under the mechanism.

5.0 ANALYSIS

At the Bonn Climate Change Conference in June, the Global CCS Institute led the conversation as a technical expert on CCS with IEA GHG at the first Global Dialogue and Investment-focused event under the accelerated mitigation ambition and implementation work programme established at COP27.

At the third and final technical dialogue of the GST diverging views on CCS were more pronounced, with countries with strong views for or against the technology speaking up in their interventions.

Latest NDC updates as of July find newcomers Andorra, Singapore, Türkiye, Turkmenistan, the UK and Vietnam including CCS in their NDCs. Furthermore, at the Katowice Committee of Experts on the Impacts of Implementation of Response Measures, CCS is found in Activity 5 of its current work plan, providing an opportunity for countries to discuss aspects in relation to capacity building and socio-economic impacts of the technology

The views expressed in these documents on engineered removals (ie direct air capture and storage – DACCS and bioenergy carbon capture and storage – BECCS) and consequently CCS, subsequently led to a significant response from the CCS/CDR community through a series of official submissions to the process.

Looking at the wider picture for Article 6, projects are indeed underway for the bilateral segment of Article 6.2, with an interim platform online as negotiations continue on various administrative elements, with technical capacity building being set up for certain countries in need.

For the global market (Article 6.4), under which the current CDR debate falls, further fundamental differences overshadow the progress necessary to begin trading, as any mechanism put in place under Article 6.4 would be perceived as the 'gold standard' for the oversight for compliance and voluntary carbon markets.

Expectations are high for the UAE's COP28 presidency to deliver on the global energy transition towards net-zero, where there is an opportunity to advance CCS.

With a global target on the horizon, global ambition on CCS deployment this decade needs to become clearer. With such momentum, it is also imperative that "how", and not just "how much", is being addressed.

With a global target on the horizon, global ambition on CCS deployment this decade needs to become clearer.

Preliminary work on the Global Sustainable State level regulatory activity, for permitting Development Goals (SDGs) and how they relate to geological storage as well as other issues such as pore space acquisition or long-term stewardship, CCS is demonstrated in IPCC AR6, in tandem with the global focus on just energy transition pathways. may offer further support for those seeking to develop projects in several states across the US. Indeed, the mobilisation of the international community towards the technical capacity building and financial needs of the Global South is a critical Coordination between federal and state regulatory authorities and technical capacity building across lever to ensure deep decarbonisation through the all jurisdictions may ultimately lead to more efficient use of CCS technologies this decade. regulatory timelines.

Role of policy

The past year has seen significant policy, legal up decarbonisation technologies and a clear and regulatory intervention in many jurisdictions around the world, which in turn has resulted in a strengthening of support for CCS and in some instances further commitments to commercial deployment. While there are noteworthy examples regulatory environment for the technology. of developments in jurisdictions with a history of The development of CCS-specific policy and support for CCS, it is positive to see a wider group of nations now focused on fostering a supportive legislation is also proving important for nations in the nascent stages of formulating a national environment for deployment.

5.0 ANALYSIS

6.0 FACILITIES LIST

The impact of strong policy intervention is particularly evident in the US, with federal and state level initiatives affording strong incentives and support for projects. At the federal level, the Inflation Reduction Act and Bipartisan Infastructure Law have had an undeniable impact upon project commercialication and their package of programs, funding and strong ambition has led to a rapid expansion in project announcements nationwide.

In Europe, the Commission's proposed Net Zero Industry Act offers further support for the EU's clean energy transition. With a focus on scaling commitment to enhancing storage opportunities and increasing injection capacity by 2030, the Act further bolsters the strong Union-wide policy and

approach to the technology. The recent development of CCS-specific laws and regulations in Indonesia and a state in Malaysia, for example, have addressed a significant barrier to more widespread deployment in both nations. These early frameworks offer an important foundation and provide confidence for investors and the operators of the newly-announced projects in both jurisdictions.

Importance of frameworks

Notwithstanding the significant developments in several jurisdictions over the past year, the scale and urgency of the policy and legislative task remains significant. Examination of national frameworks in even the most advanced jurisdictions indicates that further action is required.

In Europe, where some of the world's first CCS-specific policies and legislation were developed, work remains underway to complete and strengthen these early frameworks. In addition to the policy development highlighted previously, the Commission is supporting the revision of its Guidance Documents, a key tool for supporting operators and authorities in their domestic implementation and interpretation of permitting procedures under the EUCCS Directive. The latest version will reflect the significant developments that have been made in Europe, including project-level experience and feedback from policymakers and regulators in the member states.

Timely permitting is now an acute issue in the US, where there is a sizeable backlog for regulators.

The Commission's work will also provide important support to national authorities focusing on the permitting of new projects and address the newer technical applications of the technology that were not conceived when the original policy and regulation was developed. The timeliness of this is particularly noteworthy as several member states are currently in the process of reviewing domestic legislation to enhance regulatory frameworks.

Delays in implementing legislation will have a profound impact on project deployment, an issue that has proven particularly significant for those seeking to invest in or develop projects in several regions around the world. Many nations have yet to develop CCS-specific frameworks and a significant number have yet to begin even preparatory studies or assessments of existing capacity to regulate the technology.

In Southeast Asia, project proponents continue to voice concern that existing frameworks will not support commercial-scale deployment and cite many critical issues that remain unaddressed by national legislation. Although there have been some noteworthy developments in the region over the past year, the absence of CCS-specific legislation remains a significant barrier that must be overcoi for countries and industries to meet their commitments to both deployment and emissions reduction. Timely action is essential in this regard and the consequences of further delay are likely to prove significant.

Timely permitting is now an acute issue in the US, where a rapid increase in proposed Class VI projects determined to similarly prohibit the transboundary has resulted in a sizeable permitting backlog for transportation of CO₂ for geological storage. regulators. The Environmental Protection Agency's own database reveals a significant number of Amendments to the Protocol in 2009 addressed Class VI well permit applications remain "pending". this obstacle and a more recent decision by the While the award of primacy to some states may Protocol's parties removed a final barrier by enabling result in a swifter permitting process in the future, the provisional application of the amendment. the current position has the potential to stall deployment of the technology.

Transboundary issues

The emergence of new markets and applications for CCS technologies, enhanced or revised While several European parties have entered into these agreements to facilitate projects in the national commitments to achieving net-zero and North Sea, formal adoption and agreement has wider commercial opportunities afforded by CCS networks has led to greater scrutiny of CCS project been slower in other parts of the world where opportunities beyond national boundaries. transboundary operations are proposed.

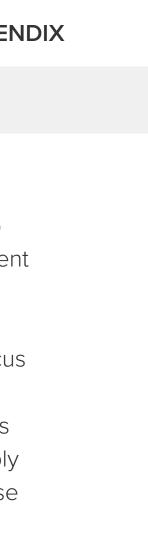
This focus has been strengthened further by The recent recommendation by the Australian the development of several regional cooperation government's House Standing Committee on initiatives aimed at advancing deployment of the Climate Change, Energy, Environment and Water

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

е	technology in recent years. Consequently, project
on	proponents, policymakers and regulators have also
ome	had to consider the legal implications of transporting
	captured CO ₂ across territorial boundaries, including
IS	between nations.
rd,	
У	The most significant of these considerations was


in Article 6 of the London Protocol, which prohibited "the export of wastes or other matter to other countries for dumping or incineration at sea" and was

> For some nations, however, uncertainty remains as governments have yet to commit to the adoption of the Protocol's amendments or enter into formal agreements with other nations to enable transboundary movement.

to ratify the 2009 amendment is an important step in recognising both the significance of the agreement and the role of CCS in the region.

In addition to international marine agreements, focus must also turn to the wider body of domestic and international law that will apply to operations of this nature. Analysis suggests a variety of laws will apply and policymakers and regulators must ensure these will not present further barriers to deployment.

3.3 STATUS OF CCS FINANCING

Financing prospects have improved substantially in the past year in key jurisdictions due to increased policy support and other factors, including price signals, and there is every indication that the momentum will continue.

This has precipitated a substantial increase in CCS investment, however the increase is mostly in equity funding in developed economies benefiting from multiple revenue streams. For CCS to scale up to reach climate goals, debt finance and rapid deployment in the developing world are necessary.

Table 3.3–1 represents the Global CCS Institute's high-level assessment of how changes in key factors have affected the finance-ability of CCS projects over the past year in leading jurisdictions.

The net result of the improvement of the factors listed in the table is a significant increase in investment to develop CCS facilities. The total capacity of CCS projects in development, construction or operation has increased from 244 Mtpa $\rm CO_2$ in September 2022 to 361 Mtpa CO_2 in July 2023, an increase of 47%.

Table 3.3–1: High level assessment of factors impacting potential financing of CCS in leading jurisdictions

Expected Return on InvestmentImprovedStrong more ofPredictability of revenuesImprovedStrong Contra- more ofMaturity of technologyImprovedAccurr studiesExperience of developersImprovedAccurr feasibilityPolitical riskImprovedMaturity of signedInterest ratesDeterioratedRising of deterioration in permitting times in the USLiability riskImprovedRisk at Risk at			
Return on Investmentmore of more ofPredictability of revenuesImprovedStrong Contra- more ofMaturity of technologyImprovedAccum studiesExperience of developersImprovedAccum feasibilityPolitical riskImprovedStrong Contra- more ofInterest ratesDeterioratedRisingPermittingUnchanged risk of deterioration in permitting times in the USTiming of permittingLiability riskImprovedRisks accur accur feasible	Factor	Change*	Drivers
of revenuesContra more of more of Maturity of technologyImprovedAccum studiesMaturity of technologyImprovedAccum feasibilityExperience of developersImprovedWhere is gendPolitical riskImprovedWhere is gendInterest ratesDeterioratedRisingPermittingUnchanged risk of deterioration in permitting times in the USTiming of permittingLiability riskImprovedRisks at	Return on	Improved	Strong more c
technologystudiesExperience of developersImprovedAccum feasibilPolitical riskImprovedWhere is gendInterest ratesDeterioratedRisingPermittingUnchanged risk 	-	Improved	Strong Contra more c
developersfeasibility riskPolitical riskImprovedWhere is gendInterest ratesDeterioratedRisingPermittingUnchanged risk of deterioration in permitting times in the USTiming of permittingLiability riskImprovedRisks a	-	Improved	Accum studies
Interest ratesDeterioratedRisingPermittingUnchanged risk of deterioration in permitting times in the USTiming 		Improved	Accum feasibi
PermittingUnchanged risk of deterioration in permitting times in the USTiming 	Political risk	Improved	Where is gene
of deterioration in permitting times in the USof permitting requireLiability riskImprovedRisks a	Interest rates	Deteriorated	Rising
	Permitting	of deterioration in permitting times	Timing of perr require
	Liability risk	Improved	Risks a are be

* Change since release of 2022 Global Status of CCS report

ger policy support, higher C pricing, tax credits, commercial/offtake agreements

ger policy support, higher C pricing, Carbon act for Difference (CCfD) instruments, tax credits, commercial/offtake agreements

nulation of operational experience, many more feasibility es/Front End Engineering & Design (FEED) studies

nulation of operational experience, many more ility studies/FEED studies

e policy support has increased, political risk ierally lower

interest rates increase the overall cost of capital

g uncertainty due to strong growth in the number mit applications requiring assessment. Permitting rements/Regulation materially unchanged

are better understood/Insurance companies ginning to price risks

Equity financing:

Busy and accelerating

Debt financing:

No firm commitments yet, but momentum growing

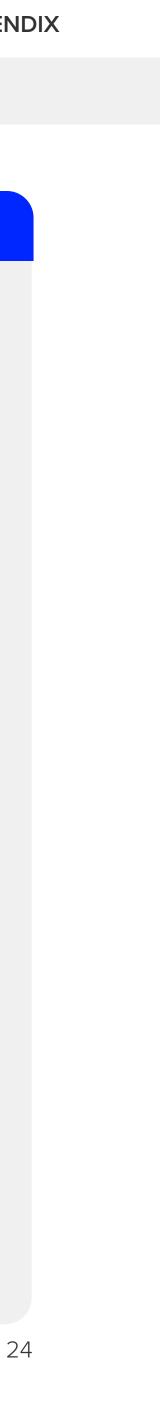
Government finance:

Governments are putting significant financial resources into CCS projects and infrastructure through loans, guarantees, or grants

Balance sheet/cash flow:

This is the main source of finance currently, but project finance is needed to reach ambitious targets

Equity investment in companies


Equity finance is a high-risk high-return investment provided in return for share ownership. The equity flow to climate technology, including CCS which accounts for only a small share, reached \$196 billion in 2022, an increase of 6.6% over 2021.

The increase contrasts with a slump in venture capital, private equity, and environmental, social and governance (ESG) investing. To provide context, overall venture capital funding decreased by 37% in 2022 to \$420 billion and ESG inflows dropped to \$155 billion in 2022 from \$650 billion in 2021.

Table 3.3–2 lists some notable deals of relevance to CCS in 2022 and the first half of 2023.

Table 3.3–2: Recent notable deals

Deal	Description	Investors	Investor type	Size \$US mil	Date
Climeworks	Direct Air Capture	Swiss Re Partners Group M&G GIC Baille Gifford	Insurer Private Equity Private Equity Singapore Wealth Fund Pension Fund	646	April 2022
Svante	CO ₂ Capture	Chevron Ventures United Airlines Samsung Ventures OGCI M&G Japan Energy Fund GE Vernova 3M Hesta AG	VC arm of Chevron Airline VC arm of Samsung Growth Capital Private Equity Private Equity Decarbonised power technology supplier Diversified conglomerate Family office	324	May 2022
Summit carbon solutions	CCS as a Service	TPG Infrastructure Tiger Infrastructure Continental SK	Private Equity Private Equity Oil and Gas Diversified conglomerate	1,000+	May 2022
Amogy	Near-zero emissions ammonia as a fuel	SK Innovation Temasek Aramco Ventures Korea Zinc MOL+	VC arm of SK Global investment company VC arm of Saudi Aramco Non-ferrous metals & clean energy company VC arm of Mitsui Lines	150	March 2023
Infinium	Synthetic fuel production using captured CO ₂ and near-zero emissions hydrogen	SK Innovation Nextera MHI Grantham Foundation	VC arm of SK (Korea) Utility Diversified heavy industry company Foundation	69	October 2021/22
lon clean energy	CO ₂ Capture	SK Materials Denbury	Semiconductor and gas supplier CCS developer / Oil and gas	25	April 2023
Heirloom	Direct Air Capture via accelerated mineralisation, CO ₂ liberation and geological storage of CO ₂	Carbon Direct Ahren Innovation Breakthrough Microsoft Climate Time Ventures	Venture Capital Venture Capital Venture Capital Venture Capital Venture Capital	53	March 2022

Equity project finance

In addition to taking equity in companies that are developing CCS, investors may also take equity directly in CCS projects. This is equity project finance. Notable examples of CCS projects that have benefitted from equity project finance include:

- Brookfield Renewables led with a \$300 million equity commitment in Entropy in a hybrid structure to fund Glacier phase I and II and a \$500 million commitment in California Resources Corporation's Grannus blue ammonia project in California.
- Crescent Midstream, backed by the Carlyle Group, partnered with Repsol and Cox Oil to build a CO₂ pipeline for offshore storage from Geismar to Grand Isle, Louisiana.
- Manulife Investment Management, the largest timberland investor, partnered with Occidental to lease 27,000 acres to develop and operate a geological carbon storage hub.
- Copenhagen Infrastructure Partners (CIP) acquired a majority stake in a blue ammonia project in the Gulf Coast with an annual capacity of 3 million tonnes at an estimated cost of \$4.6 billion along with US-based Sustainable Fuel Group. International-Matex Tank Terminals is planning to provide ammonia storage and handling services. CIP made this investment through the CI Energy Transition Fund, which makes investments aligned with the UN Sustainable Development Goals.

As the economics of CCS projects become better Further, the first project finance deals for CCS projects are now being developed by commercial understood and the need for infrastructure for the transport and handling of decarbonised fuels and banks. One example of project debt finance for a CO₂ increases, private equity investments in CCS are CCS project is the Midwest Carbon Express CCS expected to accelerate. This is most obvious in the network under development by Summit Carbon US, where the policy incentives are the strongest. Solutions in the US. The emergence of project debt finance for CCS projects is a compelling indicator of the recent rise in the finance-ability of CCS, at least in the US. To reach rates of deployment required to support climate ambitions, project debt finance will need to be as common for CCS projects as it is now for general infrastructure projects around the world.

Development capital & project debt finance

Development capital is a form of equity finance and is used for engineering and feasibility studies, permitting, and offtake agreement negotiations, etc. Project debt finance is where the project developer borrows money to finance the project, and the lender's claim is limited to project assets and cash flows and not other assets of the borrower, i.e. non-recourse finance. Project finance is crucial in financing infrastructure projects, typically accounting for 70-80% of capital expenditure. It requires a high degree of certainty of project commercial viability and is the last instrument to fall in place as all the operational, regulatory and commercial terms must be determined before or concurrent with the financial closing.

There is limited public data on development capital deals as they are only sometimes publicly announced. That said, the Institute's engagement with project developers and financiers suggests that the change in the policy landscape, especially in the US and the EU, has led to a substantial increase in the demand for and supply of development capital for CCS.

5.0 ANALYSIS

6.0 FACILITIES LIST

Government-related finance

Recent enhancements in government support for CCS in the US (e.g. the Inflation Reduction Act) have made unprecedented levels of government financing available to CCS projects in the country. Other nations have also ramped up government finance. Commitments made by governments globally in the past year that have increased financing include:

• In the US, through the Inflation Reduction Act, the federal government provides over \$300 billion for projects that support clean energy deployment and infrastructure reinvestment (including CCS) under Title 17 of the Clean Energy Financing Program and \$25 billion for Carbon Dioxide Transportation through September 2026 for loans and loan guarantees, in addition to \$2.5 billion in grants.

- The EU announced €3 billion in funding for climate technologies, including CCS projects, under the third call of the Innovation Fund.
- The UK government committed to investing £20 billion to scale up CCS projects over a period of 20 years.
- Norway provided 85% of the €400 million cost for Heidelberg subsidiary Norcem's (cement) carbon capture facility. This is in addition to Norway's long-time financial commitment to Northern Lights as part of the greater Norwegian carbon capture and storage initiative, Longship.
- The Dutch government announced €6.7 billion to be allocated to CCS projects, specifically eight projects that use the Aramis project to store CO_2 in depleted natural gas fields in the North Sea.
- In Asia, Japan's JOGMEC selected seven potential CCS projects, five domestic and two involving international CO₂ shipping to support commercialisation, with undisclosed financial terms aiming to store a combined 13 million tonnes per year of CO_2 .
- The People's Bank of China provides support through the carbon emission reduction facility (CERF) and has a targeted re-lending guota for the clean, efficient use of coal. The CERF is not capped, while the re-lending quota is currently Yuan 300 billion (US\$42 billion).

Green and climate bonds

Green and climate bond standards and certificates have historically omitted CCS technologies. Still, there are examples of more resources being allocated to examining the eligibility of CCS. Given that green bonds offer a lower cost of debt, including CCS may improve the finance-ability of CCS projects.

Corporate finance

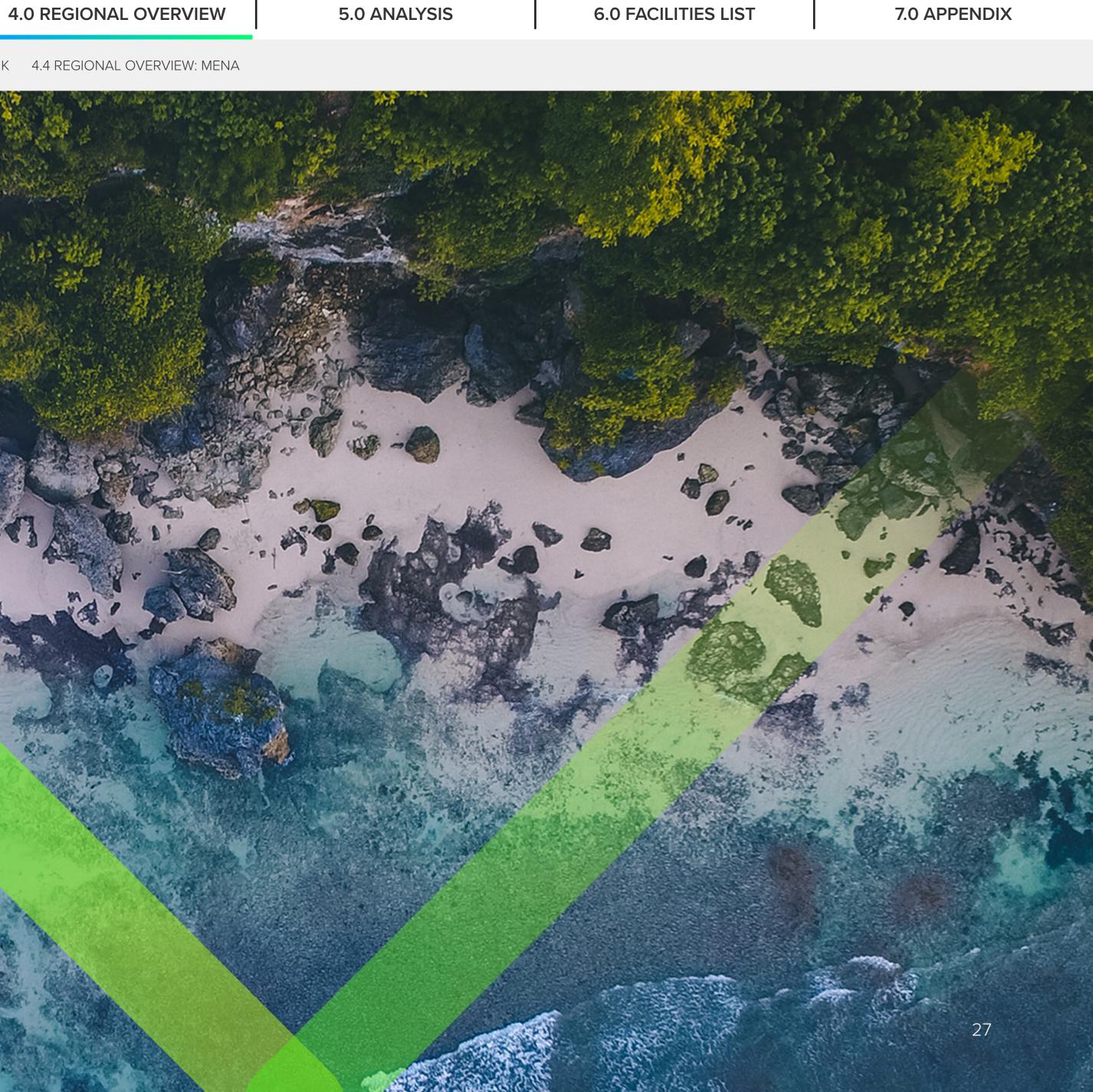
Most CCS projects are financed by corporate balance sheets as project finance is not yet widely available; for example Exxon, Occidental and Denbury each financed their CO₂ pipeline and storage networks. Historically, the bulk of corporate finance has been provided by the oil and gas sector, however there is now a greater diversity of industries investing directly in CCS projects. The fertiliser and chemicals sector is now active, with CF, MHI, Linde, OCI and Yara having announced blue hydrogen and ammonia plants in the US Gulf Coast.

Likewise, cement giants like Holcim, Cemex and Heidelberg have announced projects to deploy CCS. Maritime shipping players such as Hafnia-NYK, Knudsen and MOL have announced plans to invest in low-carbon fuel and CO_2 tankers while shifting to low-carbon fuels to decrease their emissions.

Conclusion

The recent increase in finance for CCS projects, now at unprecedented levels, is encouraging and demonstrates how policy can incentivise material private sector investment. Assuming the current global macro-trend of strengthening policy drivers for climate mitigation continues, the Global CCS Institute expects financing of CCS projects to accelerate as the finance sector and project proponents' experience grows, further de-risking the sector.

To achieve global climate goals, these developments that are focused on North America and Europe must further accelerate and be replicated in developing economies, which currently still exhibit the highest rates of growth in greenhouse gas emissions.


5.0 ANALYSIS

6.0 FACILITIES LIST

4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA 4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC

4.0 REGIONAL OVERVIEW

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Expansion of 45Q production tax credit and other incentives in the Inflation Reduction Act and funding provided under two other acts cultivate robust and attractive business environment for CCS in the US.

19 hubs

US Facility count increased

by 73 since GSR 2022*

Canada's Alberta awards 19 hubs through provincial TIER system in addition to 6 sequestration hub agreements announced in spring 2022.

*This excludes "announced" projects.

45Q

Clean ammonia and clean hydrogen production become economically favourable in the US.

40 MtCO₂

Brazil's Petrobas injects 10.6 MtCO₂ into pre-salt reservoirs in Santos Basin in 2022, yielding a cumulative 40.8 $MtCO_2$ – surpassing its 40 MtCO₂ target – and aims to reinject 80 MtCO, by 2025.

4.1 AMERICAS

Overview

North America remains the world leader in CCS deployment following substantial policy enhancements, particularly the game-changing US Inflation Reduction Act (IRA). Multiple new CCS projects and networks have been announced in the region since the publication of the 2022 Global Status Report, continuing the established momentum. Moreover, the acceleration in policy and attitudes has brought CCS more directly into decarbonisation conversations and public awareness.

Enabling this positive trend is rising societal expectations to lower emissions and define pathways to net-zero enabled by sustained policy support from federal, state and provincial level governments that create business cases for CCS. Through clear policy set by the Governments of the US and Canada as well as continued acceptance that CCS is necessary for North American decarbonisation, the persistent growth of the project pipeline in this region reflects the bullish trend of CCS across industries.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

United States

Policy

The US is leading the global CCS landscape with the largest number of CCS facilities operating, in construction, and in development, which has increased by 73 since the publication of the 2022 Global Status Report. Several projects have cited the Inflation Reduction Act (IRA) as a driving force in accelerating their launch.

The US has a robust and comprehensive policy framework that provides support for all stages of CCS deployment. CCS is a key mitigation tool for reaching federal climate goals, including 50-52% emissions reduction from 2005 levels by 2030 and net-zero emissions by 2050.

The 2021 Bipartisan Infrastructure Law (BIL), the 2022 IRA and the 2022 Creating Helpful Incentives to Produce Semiconductors and Science Act (CHIPS) provide financial and policy incentives to spur CCS deployment by providing greater financial support mechanisms. This policy framework is critical for reaching the US government's ambitious climate targets and solidifying the US as a leader in decarbonisation, which can help motivate others to deploy necessary resources and join the US in scaling carbon management.

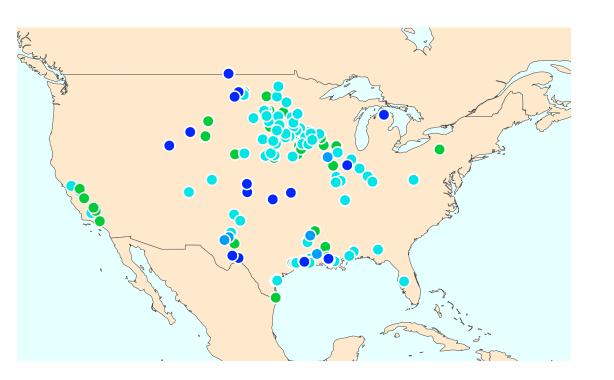
The BIL provides \$12 billion for programs such as computational science centers to expand the carbon management, research, demonstration and fundamental knowledge, data collection, data deployment up to 2026. The funds provide \$8.5 analysis, and modelling of subsurface geology billion in supplemental funding for CCS for FY2022for advancing carbon sequestration in geologic FY2026, including funding for the construction formations. Under CHIPS, the US Department of new carbon capture facilities and commercial of Energy (DOE) will carry out research for the carbon storage facilities, and \$3.6 billion in sequestration of carbon in geologic formations. supplemental funding for DAC, primarily to support the establishment of four regional direct air capture hubs in the US.

The tax incentives included in the IRA to deploy CCS and direct air capture technologies complement funding in the BIL. The IRA provides billions of dollars to help decarbonise existing industrial facilities and includes an enhanced Internal Revenue Service (IRS) Section 45Q federal corporate income tax credit that lowers carbon capture thresholds, increases the dollar value of tax credits ($\$85/tCO_2$ captured from power and industrial sources and stored in dedicated geological storage resources), and adds provisions for direct pay and tax credit transferability.

Analysis suggests the IRA could increase the deployment of carbon capture in the US by as much as 13-fold by 2030.

The CHIPS Act Sec. 10102 authorised the DOE to establish a "Carbon Sequestration Research and Geologic Computational Science Initiative" and at least two carbon storage research and geologic

The Biden Administration continues to drive CCS deployment as a whole-of-government approach, with the executive branch agencies working to advance the deployment and enhance the safety of the entire CCS value chain while addressing the concerns of communities and developers. The BIL established a timeframe for the Department of Interior (DOI) to promulgate regulations for offshore storage of CO_2 .


5.0 ANALYSIS

The Department of Transportation's Pipeline and Hazardous Material Safety Administration (PHMSA) continues to work on new rulemaking to update

standards for CO₂ pipelines, including requirements related to emergency preparedness and response.

The EPA issued a rule proposal to grant Louisiana primary enforcement authority (primacy) for Class VI wells under the Underground Injection Control program, which is currently progressing through the administrative process. The EPA also issued a proposed rule to reduce carbon dioxide emissions from power plants, expected to be finalised next year.

States are also actively engaged in policy and regulatory actions in the US. The California Air Resources Board approved its climate action plan (scoping plan) to shift the world's 4th largest economy from fossil fuels to clean and renewable energy, in which CCS is one of the mitigation tools. Louisiana has enacted legislation to address various aspects of CCS deployment, while meeting the federal primacy requirements.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Despite significant progress at federal and state levels, several important steps are needed, including community support and permitting. Successful community engagement is critical to deploying CCS projects. In the past, unsuccessful community engagement and local opposition have contributed to cancellation or relocation of some CCS projects, while others were well received. Lack of community support, coupled with permitting challenges, has become a barrier for some early development stage CCS projects in the US.

Permitting, specifically for Class VI wells and pipeline infrastructure, remains a potential bottleneck for CCS deployment, with a rapid influx of permits and need to ramp up federal and state capacity including the technical and regulatory expertise needed to evaluate permits. Congress provided funding via the IRA and the BIL to add staff to the Class VI permitting program at the EPA, which committed to focusing on streamlining the permitting process, performing continuous programmatic evaluations, and increasing public outreach, awareness, and transparency.

Ethanol production projects in the US have progressed to advanced development.

Carbon dioxide pipeline safety and pipeline The US' goal of carbon-free electricity by 2035 has siting is a concern for developers. While PHMSA turned attention to the potential for the scaling-up regulates pipeline safety, no federal entity regulates of CCS at fossil fuel power plants, evidenced in the pipeline siting in the US. Opposition to CO_2 pipelines Environmental Protection Agency's proposed rule is a consideration for developers making community issued in May 2023. Development continues at 23 power/heat facilities, more than half of which engagement a priority. plan to be operational in the late 2020s.

Projects CCS at current and future fossil fuel powergenerating assets offers the benefits of reliable, Production of clean hydrogen and ammonia has low-carbon dispatchable electricity without the become economically favourable in the new policy need for costly energy storage. In addition, CCS environment and is reflected in several of the can be combined with bioenergy and wasteprojects announced this year. The US Department to-energy to remove carbon dioxide from the atmosphere and deliver net negative emissions. of Energy's Hydrogen Shot – which seeks to reduce the cost of clean hydrogen by 80% to \$1 per kilogram There are now two biomass to power/heat facilities within a decade – is supported by government with CCS in early development in the US. funding and policy frameworks, including \$8 billion to support the development of regional hydrogen hubs. CCS projects in cement, steel and chemical

CCS at coal and gas-based hydrogen production remains the most economic option in regions where both CO₂ storage and low-cost fossil fuel feedstocks are available and offers opportunities to produce clean hydrogen at scale. Since the the number of clean hydrogen/ammonia facilities in development, construction or operation has increased by 13 in the US.

this year. CCS remains a highly viable technological solution to abate emissions in these industries. 2022 Global Status of CCS Report was published, One DAC project is in construction and two more are being developed in the US. DAC projects are supported by the billions of dollars flowing from the US government into research and development. through both the DAC Regional Hubs funding Ethanol production has driven a new tranche of opportunity and the DOE Carbon Negative Shot, announced projects and 40 have progressed into which aims to reduce carbon removal costs to advanced development. Thirty-six of these facilities are part of the Mid West Express CCS network. \$100/net tonne.

4.0 REGIONAL OVERVIEW

5.0 ANALYSIS

production are also being developed. There are

three chemical CCS facilities and three cement

CCS facilities in development. The first two steel

CCS projects in the US entered early development

6.0 FACILITIES LIST

7.0 APPENDIX

Credit: NET Power's La Porte test facility, image courtesy of NET Power

In August, the US Department of Energy announced up to \$1.2 billion funding to advance the development of two commercial-scale direct air capture facilities in Texas and Louisiana.

Project developers that offer CCS as a service, or more broadly decarbonisation as a service, are becoming a more common feature in the North American CCS landscape. Entrepreneurs able to manage the value chain for CCS projects and offer flexible business models are seeking to provide a one-stop-shop for emitters looking to decarbonise.

3.0 GLOBAL STATUS OF CCS

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

CCS transport and storage hubs remain among the largest projects with the highest potential for emissions mitigation. Capitalising on economies of scale and diverse CO₂ sources, CCS networks offer some of the largest total capacities of capture and storage. The Institute's database records 16 transport and/or storage facilities in the US in development and 1 in construction.

Broader CCS-enabled ecosystems are shaping up as a notable theme across the sector. Multiparty partnerships to develop and deploy complex projects continue to grow, taking advantage of complementary capabilities across the CCS value chain to offer deep emissions reductions across various industries. This past year saw a flurry of partnership announcements between the largest vertically integrated energy companies and emitters, technology providers, and service providers with CCS competencies or regional assets. For example, at the time of writing ExxonMobil was in the process of acquiring Denbury and its significant CO₂ transport and storage assets in a multi-billion dollar deal.

Storage developments

There is considerable geological storage development activity underway in the US. A selection of storage facilities is summarised below.

Carbon Terravault (CTV) & California Direct Air Capture (DAC) Hub Consortium

California Resources Corporation (CRC) was an early CCS mover in California, identifying 1 Gt of CO₂ storage resources at sites across the state. CRC's Class VI well permit applications filed with the US EPA are well advanced, with three having been designated "administratively complete" for its projects in development.

In the southern San Joaquin Basin, CRC estimates 46 Mt of CO₂ storage resources are present in formations of the Elk Hills Field. It refers to this project as Carbon Terravault I (CTVI). CRC is progressing offtake agreements with Lone Cypress Energy Services and InEnTec to store 100,000 tonnes of CO_2 per year from each company for storage in CTVI.

CTVI is also the planned storage site for CO_2 Class VI well permits. captured from the newly formed California DAC Hub Consortium, which is led by CRC subsidiary CTV Denbury Orion and Leo Direct. EPRI and Kern County Community College Sequestration Sites District, but comprises a much broader partnership of Denbury has announced eight projects focused organisations across industry, technology, academia, on CO₂ transport and storage, in addition to its national laboratories, local communities, government, vertically integrated project with partner Clean and labour groups. Capture rates for the California Hydrogen Works, which will sequester CO₂ from

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

DAC Hub have not been released, but the consortium is targeting funding for DAC hubs available through the US Department of Energy.

In the Sacramento Basin, CRC has identified 118 Mt of CO₂ storage resources across three additional sites, which it refers to as CTV II, CTV III and CTV IV and comprise 23, 71, and 24 MtCO₂ of storage resources, respectively. CRC is progressing an offtake agreement with Grannus to accept 370,000 tonnes of CO₂ per year from its Grannus Blue Ammonia and Hydrogen Project for storage in CTV III. It is partnering with Yosemite Clean Energy to store 40,000 MtCO₂ per year from Yosemite Clean Energy's planned bioenergy plant in Oroville at CTV sites.

Central Louisiana Regional Carbon Storage Hub (CENLA Hub)

CapturePoint in February 2023 approved its final investment decision to develop a CO₂ storage hub comprising 14,000 acres in central Louisiana. It estimates the storage complex contains more than 100 MtCO₂ of total CO₂ storage resources, with the potential to inject more than 10 Mtpa and has submitted applications for two US EPA

their planned Ascension Clean Energy hydrogenammonia complex in Ascension Parish, Louisiana. Together, the eight transport and storage-focused projects comprise 1.78 Gt of storage resources. The Orion and Leo sites have matured into early development and are located in Alabama and Mississippi, respectively. Denbury has submitted Class VI permit applications to the EPA for both Orion and Leo and has drilled an initial stratigraphic test well for the Orion site.

100 MtCO CENLA Hub's estimated storage resources, with the potential to inject more than 10 Mtpa.

River Bend CCS

Talos Energy (60% share) is also developing the River Bend CCS project in the New Orleans/Baton Rouge region with Storegga (40%). The project comprises more than 620 MtCO₂ of CO₂ storage resources across three sites, with 47,000 acres leased by Talos, which has secured the right of first refusal on an additional 63,000 acres in the area for future expansion. First injection is expected in late 2026.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Bayou Bend CCS

The Bayou Bend CCS project is a joint venture between Chevron New Energies (operator, 50%), Talos Low Carbon Solutions (25%) and Carbonvert (25%), which in March 2023 acquired nearly 100,000 acres onshore in Chambers and Jefferson counties, Texas. In August Carbonvert sold their share to Equinor. This acreage adds to the project's previously announced 40,000 acres in state waters offshore Port Arthur/Beaumont, Texas. Bayou Bend's offshore permit was the first offshore storage permit granted by the state. The combined onshore and offshore acreage holds an estimated CO₂ storage resource exceeding 1 GtCO₂. First injection is expected in early 2027.

Coastal Bend

In Corpus Christi, Texas, Talos Energy (50%) is partnered with Howard Energy Partners (50%) in developing storage sites across 13,000 acres onshore, comprising 50-75 MtCO₂ of CO₂ storage resources. The initial project goal is to store 1-1.5 Mtpa in saline formations, with the capability to increase to 6-10 Mtpa. First injection is expected late 2026.

Canada

Canada has experienced continued growth of Policy CCS, particularly in Alberta and Saskatchewan, since establishing an escalating carbon price that is continuing to drive CCS investments. Canada's ambitious climate targets include reducing greenhouse gas emissions at least 40% by 2030 from 2005 levels and reaching net-zero emissions by 2050. In Alberta, in addition to the six sequestration hub Its federal emissions reduction plan expects national agreements announced in the second quarter of 2022, 19 further hubs have been awarded through CCS capacity to grow significantly, adding facilities to capture and store at least 15 Mtpa by 2030, while a the provincial Technology Innovation and Emissions federally mandated carbon price is slated to increase Reduction Regulation (TIER) Regulation. These hubs to C\$170 per tonne by 2030. facilitate access to storage resources for emitters undertaking carbon capture and following on from this, networks have become a primary strategy for The federal government announced significant support for CCS deployment in its March budget, including growing CCS in the province.

an investment tax credit expected to be in place by October following further public consultation that will cover up to 50% of the capital cost of CO_2 capture projects over 2022-2030. There is also a proposal to introduce carbon contracts for difference (CCfDs), which effectively de-risk carbon pricing by eliminating carbon price uncertainties over future prices.

Several projects have been announced since last year and most of the projects in the pipeline are At a provincial level, Alberta continues to advance efforts to be a global leader in emissions reductions, progressing through various stages of development. innovation and technology, and the sustainable These projects slated to come online in the coming development of its resources. The Emissions years span industries including refining, power generation, hydrogen production, and ethanol, Reduction and Energy Development Plan sets Alberta's course for cutting emissions, attracting pointing towards a growing interest in multiple investment, working with Indigenous communities and sectors for CCS as an emission abatement pathway. supporting jobs. Leveraging the province's geological advantages enables large-scale emissions mitigation. Carbon price stability and certainty of business CCS will be a fundamental piece of the equation. case around CCS are chief concerns among

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Projects

The Glacier Gas plant CCS project in Alberta came online in August 2022 and has been successfully storing CO_2 as a first-of-kind application that captures and sequesters CO₂ from the exhaust of a natural gas-fired emission source.

Credit: Carbon Engineering's Innovation Centre and Research & Development headquarters, image courtesy of Carbon Engineering

Canadian enterprises and as such, CCS project growth in the country is cautiously slow.

Storage developments

Northeast British Columbia (BC) Geological Carbon Capture and Storage Atlas

Geoscience BC in February 2023 published the Northeast BC Geological Carbon Capture and Storage Atlas, the first report in a project aimed at developing a province-wide CCS storage resource atlas. The report estimates 4,230 Mt of combined (depleted gas fields and deep saline formations) CO_2 storage resources are present in the study area.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Table 4.1–1: Proponents and estimated CO₂ storage rates of the first six CCS Hub projects selected by the Government of Alberta to evaluate and explore CO₂ storage site suitability in the Edmonton region

Project	Proponents	Location	Rate
Meadowbrook Carbon Storage Project	Bison Low Carbon Ventures	Morinville, Alberta	3 Mtpa (25 yrs)
Open Access Wabamun Carbon Hub	Enbridge, First Nations Capital Investment Partnership, and Lac Ste. Anne Métis Community	West of Edmonton	4 Mtpa
Origins Project	Enhance Energy	Central Alberta	20 Mtpa
Alberta Carbon Grid (ACG)	Pembina and TC Energy	North of Fort Saskatchewan	10 Mtpa ACG Industrial Heartland Project; 20 Mtpa across several hubs comprising ACG
Atlas Carbon Sequestration Hub (Atlas Hub)	Shell Canada Ltd., ATCO Energy Solutions Ltd., and Suncor Energy Inc.	East of Edmonton	.7885 Mtpa in Phase I; Expansion up to 10 Mtpa
Sequestration Hub by Wolf Midstream and Partners	Wolf Midstream (Wolf), Whitecap Resources (Whitecap), the First Nation Capital Investment Partnership and Heart Lake First Nation	Fort Saskatchewan area	2-3 Mtpa initially

5.0 ANALYSIS

6.0 FACILITIES LIST

Alberta CCS Hubs

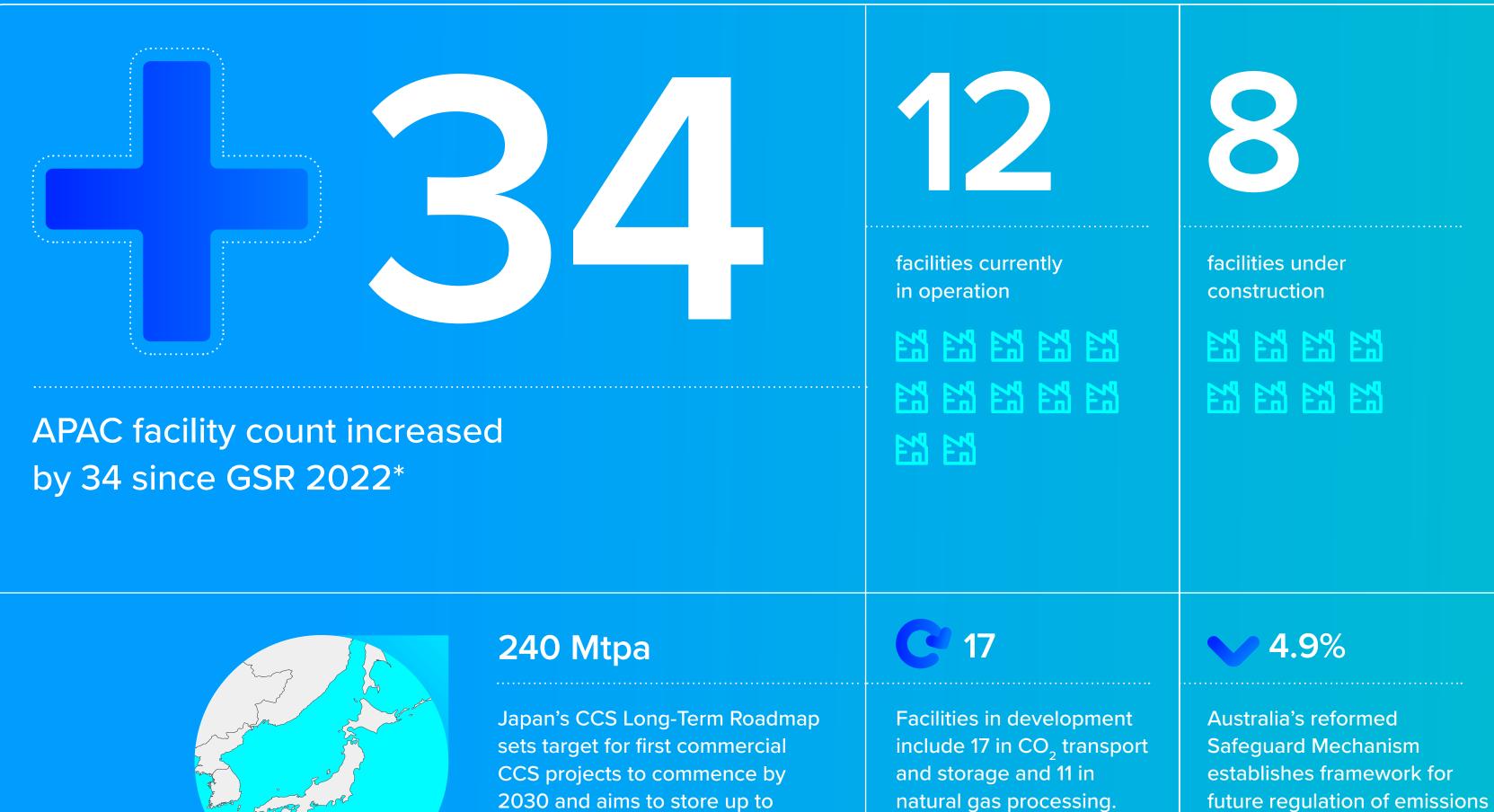
Alberta in March 2022 selected six CCS hub project proposals to evaluate and explore CO_2 storage site suitability in the Edmonton region. If these six hub projects proceed and expand to their maximum capacity, they will have a combined estimated annual CO₂ storage rate exceeding 50 Mtpa (Table 4.1–1). A second group of 19 hub proposals were also selected for the same evaluation process in October 2022. When the hub proponents have completed their evaluations, they will be able to apply to provincial government for the right to inject CO_2 at their evaluated sites. The evaluation process is ongoing.

Brazil

Policy

In August, a Bill (PL 1.425/2022) which would establish a legal framework for CCS in Brazil passed the Senate and moved through to the Chamber of Deputies. The law outlines fundamental definitions and regulations for CO₂ storage in Brazilian sedimentary basins, including initial terms for storage and the limits of responsibility for the stored CO₂ over time. If approved by the Chamber of Deputies, the Bill will then progress to the President for sanction.

Projects


Brazil's state-controlled Petrobras operates one of the world's largest CCS projects in the Santos Basin and in its 2023 Climate Change Supplement report says it injected 10.6 MtCO₂ into the pre-salt reservoirs in 2022, yielding an accumulated 40.8 MtCO_2 injected since operations began. Petrobras has readjusted its target to reinject 80 MtCO₂ cumulatively by 2025.

Petrobras is preparing a pilot project for CCS from industrial emissions and is looking to build partnerships for a full-scale CCS hub. This pilot project will serve as a testing ground for developing the geological aspects of carrying out CCS in a saline aquifer environment and will involve geophysical studies, at least one drilling operation, and research on storage sealing. These operations will likely provide not only technical data for the project itself but also information for legislators and regulators to build up the framework for such activities.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK

2030 and aims to store up to 240 Mtpa of CO₂ by 2050; JOGMEC selects seven candidate projects for feasibility studies.

*This excludes "announced" projects.

5.0 ANALYSIS

reduction, including a decline

in baseline emissions

of 4.9% per year to 2030.

6.0 FACILITIES LIST

4.4 REGIONAL OVERVIEW: MENA

4.2 ASIA PACIFIC

Overview

The Asia Pacific region presents a dynamic environment for the deployment of CCS, with significant activity from both government and industry across the region in the past 12 months. Nations that took early actions such as Australia and Japan continue to develop domestic policies and legislation, with both nations introducing new measures targeted at promoting the technology's deployment.

After reducing support for CCS by cancelling its CCUS Hubs and Technologies Program, the current Australian government has taken some positive actions towards supporting CCS. These actions include important steps towards enabling the transboundary transport and geological storage of CO₂, an issue of significant importance for the broader Southeast Asia region. Japan has announced funding for the development of seven CCS projects, two of which will involve transboundary CO₂ transport and storage.

New project-level developments in Southeast Asia also reflect the pace of deployment across the region. Recent project announcements, which are being led by the oil and gas sector, offer significant potential for emissions mitigation in the region's

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK

natural gas sector and are positioned as a key aspect of countries' transition pathways towards clean energy. It is clear, however, that further policy and regulatory development will be required to support development at the scale envisaged by industry and governments.

There are currently 54 facilities in development, construction or operation across the Asia Pacific region, with 34 added since the release of the 2022 Global Status of CCS Report. Twelve facilities are in operation (11 in China plus Gorgon in Australia) and eight are in construction (six in China plus Kasawari in Malaysia and Santos' Moomba project in Australia).

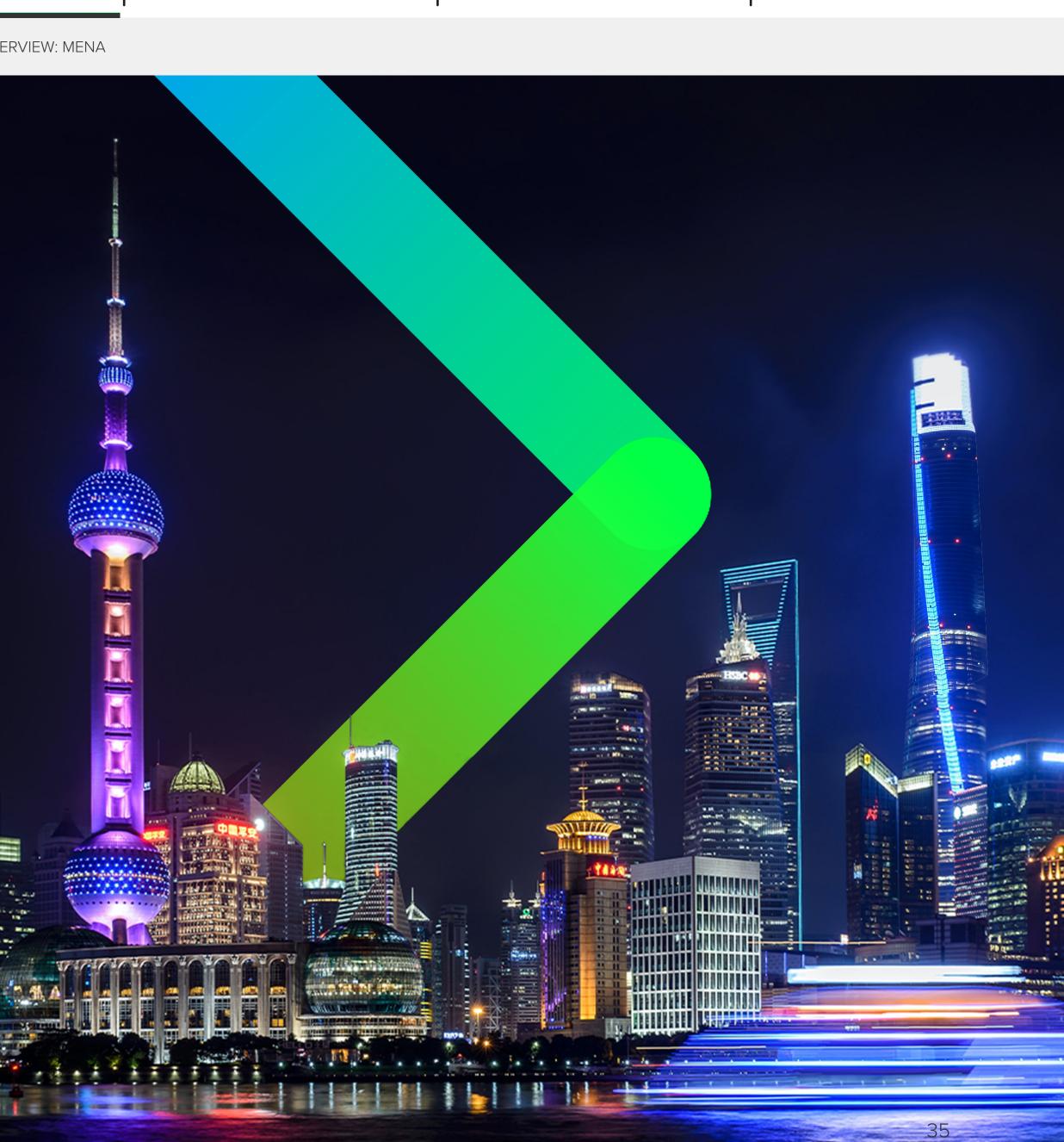
Thirty-four facilities are in early or advanced development across the region, of which 11 are in natural gas processing. Natural gas processing involves stripping reservoir CO₂, and other unwanted gases such as H_2S from the methane before it is sold. This produces a near-pure stream of CO₂ that is generally released into the atmosphere.

However, as companies and countries adopt netzero emission targets, the capture, compression, and re-injection of reservoir CO₂ will become standard operating practice. Gas fields with high CO_2 (>10% and up to 70%) are being developed with CCS, and almost all facilities are vertically integrated with offshore storage. Once infrastructure to re-inject CO_2 is established, the owners of these facilities will have the option to offer CO₂ storage

services to third parties for a fee. This development strategy is being considered by almost every vertically integrated natural gas processing CCS project in the Asia Pacific region.

Seventeen facilities in development are CO₂ transport and/or storage projects. These projects do not have a CO₂ capture source within their ownership structures. Each may provide CO₂ transport and storage services potentially to multiple customers that require a CO_2 management solution. These projects, together with the vertically integrated natural gas processing projects mentioned in the previous paragraph, have the potential to create multiple CCS networks serving industry across the Asia Pacific region, with CO₂ transport by pipeline and by ship.

However, where transboundary transport of CO₂ is required, bilateral agreements between exporting and importing countries will be required, following the promulgation of appropriate CO₂ storage regulation and where applicable, the ratification of amendments to the London Protocol. These issues are further described in section 3.2 of this report.


There are currently 54 facilities in development, construction or operation across the Asia Pacific region.

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

4.4 REGIONAL OVERVIEW: MENA

4.1 REGIONAL OVERVIEW: AMERICAS

4.2 REGIONAL OVERVIEW: ASIA-PACIFIC

China

Policy

Strong momentum for CCS development contin in China since the successful start of full operati of its first integrated megatonne-scale CCS proj in Shandong province in August 2022.

The signals are clear, but concrete policy tools are limited. Since 2020, most of the released policy documents within China's "1+N" climate framework at the national and sectoral level have incorporated CCS. The "1+N" climate framework refers to a series of directives guiding China's efforts to peak emissions before 2030 and achieve carbon neutrality by 2060.

There is also a growing interest from the sub-national authorities – around 10 provincial governments have included CCS development in their decarbonisation efforts. The national consensus is clear that CCS will play an essential role in China's carbon neutrality journey.

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Projects

	In China, there are four CCS facilities in development,
	six in construction and 11 in operation. Ten of these
	projects are in the chemical industry, five are in
nues	power generation, two are in gas processing, two
tions	are CO ₂ transport and storage, one is in iron and
oject	steel production and one in oil refining.

Some of the more significant developments in China since the 2022 Global Status of CCS report was published are summarised below.

November 2022: SINOPEC, Baowu, Shell and BASF announce they will jointly explore an up to 10 Mtpa large-scale open-source CCUS hub in Yangtze River Delta region.

December 2022: Huaneng, one of China's largest power producers, commences construction of the world's largest, 1.5 Mtpa, coal-fired power integrated CCUS project in Gansu province.

January 2023: CNOOC, Guangdong Provincial Development, Shell, and ExxonMobil advance the 10 Mtpa Daya Bay CCS hub project by reaching a Joint Study Agreement.

May 2023: Construction begins on a 3 Mtpa CCUS project in Ningxia region by China National Energy Investment with the first phase to capture 500 ktpa CO_2 from a coal-to-liquids facility for enhanced oil recovery.

Early June 2023: China Energy Investment's 500 ktpa coal power CCUS project enters full operation in Jiangsu province, becoming Asia's largest CCUS project in the power sector; CNOOC commences operations at China's first offshore CO₂ storage project.

28 June 2023: China United Cement Group begins construction of the world's largest oxyfuel CCUS project in the cement industry in Qingzhou, Shandong. The captured CO₂ will be used for food and chemical production. Whilst this project does not currently involve the storage of CO_2 and so is not included in the Institute's database of CCS projects, it is noted here due to the significance of the application of CO_2 capture technology at a cement plant.

July 2023: China's first commercial-scale CO₂ transport pipeline with a length of 109 km starts full operations, serving SINOPEC's Qilu-Shengli CCUS project; China's first Natural Gas Combined Cycle Carbon Capture Test facility enters operation at a scale of 2,000 tpa at Hainan Island, developed by Huaneng Group.

Credit: Shanghai Shidongkou Coal-Fired Power CO₂ Capture Facility, image courtesy of Huaneng Clean Energy Research Institute.

4.1 REGIONAL OVERVIEW: AMERICAS

4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Japan

Policy

The Ministry of Economy, Trade and Industry (METI) announced its CCS Long-Term Roadmap in January 2023, setting a target for Japan's first commercial CCS projects to commence by 2030 and aiming to store up to 240 Mtpa of CO₂ by 2050. Key items included in the Long-Term Roadmap are:

- Capital support from METI (seven candidate projects have been selected).
- Future CCS cost targets (40% cost reduction).
- Enhancing public acceptance of CCS.
- Promoting overseas CCS Projects, especially in Southeast Asia.
- Establishing a comprehensive regulatory framework for CCS.

In June 2023, METI presented a set of draft rules for the common governance of CCS with Australia and Southeast Asia at an Asia Zero Emission Community (AZEC) meeting in Indonesia. The adoption of shared rules is aimed at lowering the cost of CCS and shortening construction timelines. A detailed proposal on shared rules will be tabled at an AZEC ministerial meeting in early 2024.

Projects

In line with the Japanese government's Sixth Strategic Energy Plan (2021) that included CCS as one of the pathways to achieving an emissions In accordance with the CCS Long-Term Roadmap, the Japan Organisation for Metals and Energy reduction of 46% from 2013 levels by 2030, ITOCHU Security (JOGMEC) selected seven candidate Corporation, Mitsubishi Heavy Industries, INPEX projects for feasibility studies. These projects span Corporation and Taisei Corporation signed a memorandum of understanding in January 2023 a wide range of sectors including power generation, to conduct a feasibility study on a large-scale, oil refining, steel, chemicals, pulp and paper, and cement. In total, the projects aim to store wide area CCS value chain project. The study will approximately 13 Mtpa of CO₂. Five projects will include separation, capture, transportation and store CO_2 in Japan and the remaining two in storage of CO_2 . Malaysia and Oceania, respectively.

Based on data and knowledge obtained through the exploration of oil and gas, the CO₂ storage potential of Japan has been broadly characterised by geological surveys that found storage resources in deep saline formations within geological structures to be an estimated total of 16 billion tonnes across 11 structures.

The selected project proponents are:

- 1 JAPEX, Idemitsu, Hokkaido EPC
- 2 Itochu, Nippon Steel, Taiheiyo Cement, Mitsubishi Heavy Industries, INPEX, Taisei Corporation (General Constructor)
- 3 JAPEX, Tohoku EPC, Mitsubishi Gas, Hokuetsu (Paper mill), Nomura Research Institute (Consulting)
- 4 INPEX, Nippon Steel, Kanto Natural Gas
- 5 ENEOS (Refinery), JX Oil, J-Power
- 6 Mitsui & Co.
- 7 Mitsubishi Corp., Nippon Steel, Exxon Mobil Asia Pacific

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Credit: The Tomakomai Project, image courtesy of JCCS

Japanese companies are active investors in, or technology suppliers to, many CCS projects around the world. These projects are mostly associated with fossil point sources of CO_2 . However, interest in direct air capture (DAC) and biomass is now emerging.

Tokyo Gas Co., Ltd. became the first Japanese company to invest in Denver-based Global Thermostat to implement its DAC technology. In April 2023, NextGen, a South Pole/Mitsubishi Corporation joint venture, established the world's largest diversified portfolio of permanent certified carbon dioxide removal certificates (CDRs) through the advance purchase of 193,125 tonnes of CDRs from carbon removal projects.

The advance purchase will include CDRs from Summit Carbon Solutions' \$5.1 billion biomass carbon removal and storage (BiCRS) project being implemented in the US Midwest; the world's largest direct air capture and storage (DACS) project being developed by 1PointFive in Texas; and Carbo Culture's inaugural high technology biochar project in Finland.

4.1 REGIONAL OVERVIEW: AMERICAS

4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

South Korea

Policy

CCS is featuring as a core emissions reduction component across several of South Korea's national climate change mitigation strategies and action plans, with the designation of CCUS as one of the Ten Major Technologies for Carbon Neutrality Technology Innovation in the country's 2050 Carbon Neutral Promotion Strategy, accompanied by a commitment to commercialise the technology by 2030.

In March 2023, the South Korean government published a draft of its first National Framework Plan for Carbon Neutrality and Green Growth, which sets out the country's plan to achieve its 2030 emissions reduction target. It also commits to developing two national policies to support CCUS and legislation addressing business, safety and certification of CCS projects. These developments underpin the strong interest in and uptake of CCS project partnerships across the country's industrial sectors and will likely enhance the development of further policy and regulatory frameworks to facilitate deployment of the technology.

Projects

Multiple project announcements and cooperation agreements between South Korea's leading energy and industrial companies to assess opportunities for CCS technologies have seen CCS-related development gain momentum over the past 12 months. Notable examples include:

- TCRK Environmental Services' collaboration with Asia Cement, a leading cement production company in South Korea, to develop carbon capture technology for Asia Cement's plants in pursuit of the company's 2025 emissions reduction targets.
- Hyundai Merchant Marine's partnership with PANASIA, and the collaboration between Samsung Heavy Industries (SHI) and BASF, to assess the feasibility of carbon capture systems onboard maritime shipping vessels.

Transboundary CO₂ storage opportunities Business models involving transboundary CO₂ transport and storage activities are emerging, with multiple consortiums formed in the past year in South Korea's private sector to explore opportunities in the region.

In November 2022, a consortium of eight South Korean energy companies signed a memorandum of understanding with Caltex to cooperate on and promote the development of CCUS in South Korea. **5.0 ANALYSIS**

6.0 FACILITIES LIST

7.0 APPENDIX

The companies will capture CO₂ produced from their plants at the Yeosu National Industrial Complex for use as raw material for chemical and mineral carbonation processes, with the remainder to be transported overseas for geological storage.

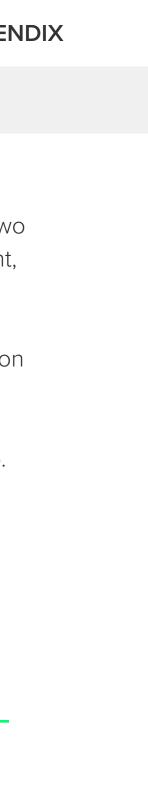
Similarly, a consortium of six leading industrial companies in South Korea announced a partnership with Malaysia's Petronas to implement a cross-border CO₂ transport and storage project between South Korea and the proposed CCS hub in Sarawak, Malaysia.

India

Policy

India's central government in June 2023 passed an amendment to the Energy Conservation bill that would set up a domestic carbon credits trading scheme. This came just after India updated its NDCs through the UNFCCC in November 2022 and released a policy framework paper on CCUS through NITI Aayog, an Indian central government think tank, in December 2022.

While CCUS is not yet included in the carbon credits trading scheme. India has included CCUS as a removal activity under the Article 6.2 mechanism. In addition, the Indian government announced the establishment of two National Centres of Excellence


in Carbon Capture and Utilization in 2022. These two institutions will focus on research and development, and act as centres for collaboration and other initiatives related to carbon capture and utilisation. In July 2023, India and the US agreed to add carbon capture, utilisation and storage as a work stream under the Emerging Fuels and Technology Pillar of the US-India Strategic Clean Energy Partnership. Further, the US and India welcomed engagement through the Low-Emissions Gas Task Force to reduce emissions through the deployment of emerging technologies including CCUS.

Australia

Policy

In March 2023, Australia's Federal Government announced reforms to its Safeguard Mechanism, to establish a framework for future regulation of emissions reduction by large emitters (emissions >100,000 tonnes per year). Key amendments include baseline setting for covered facilities, an annual rate of decline in baseline emissions of 4.9% yearon-year to 2030, generation and use of Safeguard Mechanism Credits (SMCs), greater transparency requirements, and a "hard cap" on total emissions between 2020 and 2030.

Covered facilities could utilise carbon capture technology on site to meet their baselines, however

4.1 REGIONAL OVERVIEW: AMERICAS

4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

such abatement projects, which directly reduce emissions from the operations of a covered facility, will not be eligible for Australian Carbon Credit Units (ACCUs) under the new rules. Covered facilities whose emissions are below their baselines will automatically generate tradeable Safeguard Mechanism Credits.

The Western Australian state government introduced the Petroleum Legislation Amendment Bill, integrating transport and storage of greenhouse gases into current state legislation. The amendment legislation aims to provide industry with the opportunity to decarbonise through CCS.

Key provisions include permitting requirements for onshore and offshore storage operations, transfer of liability for stored CO_2 to the state following a 15-year post-closure period, prescriptive site closure requirements and allowance of GHG transport via pipelines to depleted petroleum reservoirs in the state.

The federal government's House of Representatives Standing Committee on Climate Change, Energy, Environment and Water in June 2023 recommended that Australia ratify both the 2009 and 2013 amendments to the London Protocol, which will remove barriers to transboundary transport of CO₂ for offshore storage.

Rest of Asia Pacific

High domestic emissions, limited domestic storage potential and close geographic proximity to suitable storage sites in the territorial waters of neighbouring countries have strengthened the case for export and import of CO_2 and the establishment of storage hubs in the Asia Pacific region.

Several world-class sedimentary basins exist in the region, creating the opportunity for a new regional Whilst CCS projects are being developed in this region, gaps in policy, regulation and storage CO₂ transport and storage industry. Malaysia, resource development present significant Indonesia, Thailand, Brunei and Timor-Leste are all moving forwards to develop opportunities to headwinds to reaching FID. In response, the receive CO_2 from other countries. In every case Global CCS Institute created the Southeast Asia except Indonesia and the Malaysian state of Sarawak, CCS Accelerator (SEACA) initiative to work with the absence of comprehensive CCS regulation is governments, multilateral organisations and the private sector to help accelerate investment in a barrier to CCS deployment in these countries. Nonetheless, efforts are underway in the region to CCS as an essential component of the region's broader efforts to mitigate climate change. The develop and promulgate regulation to remove those Institute plans to run three SEACA workshops barriers, and policies that support investment in CCS are now being implemented in some nations. in 2023/2024.

Table 4.2–1 on the following page summarises the policy and regulatory environments and CCS projects of nine Southeast Asian countries.

SEACA collaboration

There is a great need for CCS in hard-to-abate sectors, particularly those with process emissions and in economies that rely upon fossil fuels to support their rapid economic growth. Consequently, it is imperative that CCS advances rapidly in Southeast Asia, which hosts a significant proportion of the world's emissions-intense industry and has a growing dependence on fossil energy.

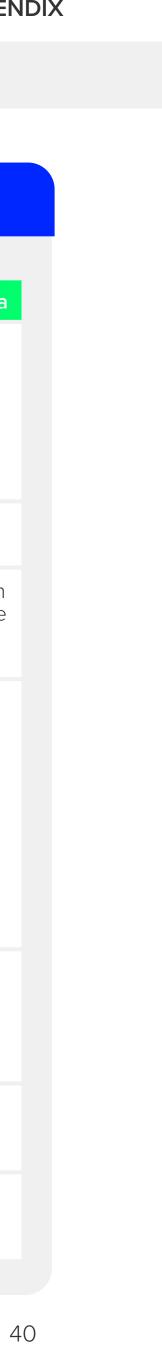
5.0 ANALYSIS

The Institute partnered with the ASEAN Centre for Energy to deliver the first SEACA workshop on 15-16 May 2023 in Bangkok, Thailand. Delegates representing Southeast Asian governments, the governments of Japan and Australia, project developers and other stakeholders met to discuss how to accelerate investment in CCS in the region. Discussion focused on three pillars: CCS regulation, enabling policy, and geological storage resource development.

The SEACA workshop demonstrated the potential for CCS in Southeast Asia and the willingness of governments and project developers to come together to discuss how this essential technology can be deployed in support of achieving net-zero emissions.

A clear conclusion from the discussion is that success can only be achieved through active collaboration between the public and private sectors. Waiting for the market to deliver CCS without a strategy, without cooperation between governments and project developers, or without the necessary interventions will not achieve the scale of deployment required to meet climate goals.

Credit: Photo taken by Alex Zapantis



4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Table 4.2–1: CCS in other countries in APAC (does not include "announced" projects)

	Malaysia	Indonesia	Vietnam	Thailand	Singapore	Brunei	Philippines	Timor-Leste	Papua New Guinea
International Climate Change Commitment (NDC)	45% reduction in GHG emission intensity against GDP by 2030	32% reduction and conditional reduction target up to 43% of the business-as-usual scenario, by 2030	Unconditional 15.8% reduction of GHG emissions by 2030	30% reduction of GHG emissions by 2030	Reduce GHG emissions to around 60 MtCO ₂ e in 2030	20% reduction of GHG emissions relative to business as usual by 2030	75% reduction of GHG emissions relative to business as usual by 2030; Conditional 2.7%	No set emissions reduction targets	Reduce emissions from deforestation, forest degradation and agriculture by 10Mt compared to 2015 by 2030~
Net Zero Target	Pledge – 2050	Proposed – 2060	Policy – 2050	Policy – 2050	Policy – 2050	Proposed – 2050	×	Proposed – 2050	Policy – 2050
Party to the London Protocol	Limited to UNCLOS	Limited to UNCLOS	Limited to UNCLOS	Limited to UNCLOS	Limited to UNCLOS	Limited to UNCLOS	~	Limited to UNCLOS	Party to the London Convention, not the Protocol
CCS-specific domestic policies or incentives	Tax incentives proposed for CCS in 2023 Budget	National Action Plan recognises role of CCS	Latest NDC includes a reference to CCS within a technology transfer objective	Corporate tax exemptions	Singapore Economic Development Bank commitment to support CCS RD&D efforts through the S\$49 million Low Carbon Energy Research Funding Initiative MOU with Australia committing to collaboration around CCUS activities	MOU with Singapore committing to strengthen bilateral collaboration on CCS 50% state-owned Brunei Shell Petroleum's MoU with Shell Eastern Petroleum to explore feasibility of CCS between Brunei and Singapore	×	×	×
CCS projects in development	Petronas Kasawari (in construction) and PTTEP Lang Lebah	PAU Central Sulawesi Clean Ammonia, Repsol Sakakemang, BP Tangguh, Pertamina Sukowati, Carbon Aceh Arun Hub, ExxonMobil Indonesia Regional Storage Hub, Pertamina Jatibarang	×	Proposed PTTEP project at Arthit offshore gas field	×	×	×	Bayu Undan project	TotalEnergies Papua LNG
CCS-specific legal and regulatory framework	Applicable only in the state of Sarawak	~	×	×	×	×	×	×	×
Existing legislation applicable to CCS operations	~	~	~	~	~	~	~	~	~

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK

projects across Europe

North Sea

North Sea sites continue to dominate as preferred locations for CO₂ storage, but other opportunities emerging.

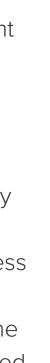
63% rise in projects in various stages of development and operation since GSR 2022.

Northern Lights, the world's first open-source CO₂ transport and storage infrastructure, expected to be online in 2024 - and built ready for expansion.

4.4 REGIONAL OVERVIEW: MENA

63%

2024


4.3 EUROPE & UK

Overview

Momentum for CCS continues to build in Europe, with the European Commission initiating a number of new legislative proposals in recent months, adopting others that have been in the works since last year and making further progress in funding CCS projects through the Innovation Fund and Connecting Europe Facility.

Many European countries have also made important advancements in CCS deployment, including Germany and France launching consultations on policies that aim to support CCS. Funding support through the Innovation Fund and Connecting Europe Facility as well as individual national subsidy programs (notably in Denmark, the Netherlands, Norway and the UK) continue to support the business case for CCS deployment in Europe. In addition, the ETS price reached a new high of €100 per tonne of CO_2 in February 2023, contributing to an improved business case for CCS projects in some sectors. Germany and France are also looking into carboncontracts-for-difference.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC

4.3 REGIONAL OVERVIEW: EUROPE AND THE UK

North Sea sites continue to dominate as preferred locations for CO₂ storage in Europe, but other storage opportunities are emerging. Bulgaria, Croatia and Greece are in the process of developing new on- and offshore CCS projects, while Italy has awarded a pilot storage license to the Ravenna CCS Hub project in the Adriatic.

Denmark, in addition to developing offshore storage in the North Sea, is also considering onshore storage, along with Poland.

Several European countries have committed to capture CO_2 as part of their climate mitigation strategies but not store it domestically due to geological limitations or public opposition. Switzerland, Finland, Sweden, Germany and Belgium are looking to store their CO_2 in other European Economic Area countries. Denmark, Belgium, France, the Netherlands, Norway, Germany, Switzerland and Iceland have engaged in bilateral agreements, declarations and/or collaboration on CCS and CO₂ transport.

Despite overall progress, there have been setbacks and slowdowns in 2023 as well. The Porthos project has not proceeded to FID because of a lawsuit which has now concluded in favour of the project while Celsio Oslo has been halted temporarily due to cost concerns.

European Union

Policy

Certification of carbon removals

As a follow-up to the EU communication on Sustainable Carbon Cycles, the European Commission in November 2022 adopted a legislative proposal for the first EU-wide voluntary framework to reliably certify carbon removals. Removals have been defined under three categories – permanent carbon removals (including CCS), carbon farming practices that store CO_2 in the soil or in forests, and carbon storage in long-lasting products and materials.

The proposal also detailed certification rules for the measurement, monitoring, reporting and verification of carbon removals. Co-legislators are expected to finalise their position before December 2023 in order to reach an inter-institutional agreement by the new legislative mandate (2024-2029).

Green Deal Industrial Plan

In February 2023, the European Commission released its Green Deal Industrial Plan to further support climate neutrality targets and heighten Europe's growing net-zero industrial sector. The plan aims to scale up European manufacturing capacity of green technologies. The plan's focus has four key pillars: a predictable and simplified regulatory environment, faster access to funding, enhancing skills, and open trade for resilient supply chains.

5.0 ANALYSIS

6.0 FACILITIES LIST

4.4 REGIONAL OVERVIEW: MENA

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Net-Zero Industrial Act

As part of the first pillar of the Green Deal Industrial Plan, the European Commission proposed the Net-Zero Industry Act in March 2023, which seeks to scale up technologies that will drive decarbonisation, including CCS. In particular, the Act proposes an injection target of 50 Mt of CO₂ stored per year within the EU by 2030.

The Commission stated that further development of permanent geological CO₂ storage will enable capture projects to be realised and called on member states to enhance transparency and reporting, particularly in relation to geological data, to ensure the injection target is met. The proposal is currently under revision by co-legislators the European Parliament and the Council of the European Union, with an aim to commence interinstitutional negotiations by the end of 2023.

ETS revision and ETS price

A reform of the EU Emissions Trading System (EU ETS) was published in the Official Journal of the EU in May 2023 which, after two years of negotiations, is set to support the target of a 55% reduction of GHG emissions by 2030 while including new sectors (maritime transport). It also extended the scope of covered activities to all means of CO₂ transport. In February 2023, the price of permits in the EU carbon market hit €100 per tonne for the first time, boosting the business case for CCS and other green technologies.

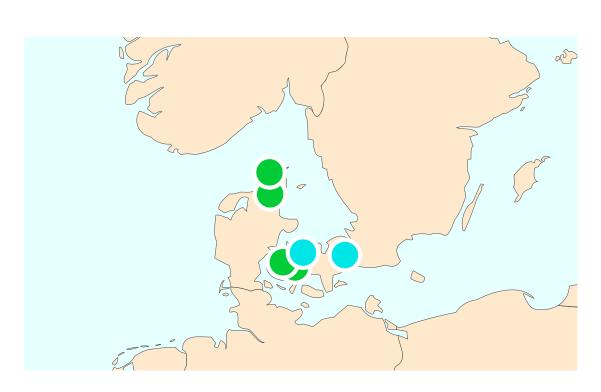
Carbon Border Adjustment Mechanism

The CBAM regulation also entered into force in May 2023 along with the revised EU ETS directive. Innovation fund – third call for large-scale projects This tool aims to put a fair price on the carbon The number of projects in various stages of The European Commission launched its third call emitted during the production of goods entering the for large-scale projects in November 2022 with a development, construction or operation has increased by 63% since last year's reporting, budget that was doubled due to higher ETS prices EU market, stimulating de facto cleaner production with 119 projects across Europe compared processes in countries outside of the EU. Since (to around €3 billion), which closed five months later launching its transitional phase in October 2023, the with 239 applications. For the first time, the EU has to 73 projects in the GSR 2022. CBAM applies to carbon-intensive or carbon leakage divided its Innovation Fund budget, with CCUS to risk imports (cement, iron and steel, aluminium, etc). Denmark, Norway, the UK and the Netherlands be funded under the €1 billion allocated to "General The first reporting period for importers will end on are leading the way, with Denmark and the UK, Decarbonisation". Energy-intensive industries recently launching their first tenders for CO₂ storage accounted for more than two-thirds of all applications, 31 January 2024. licenses in the North Sea, including in both saline demonstrating clear momentum in this sector and European CCUS Strategy a clear need for CCUS. The Commission selected formations and depleted oil and gas fields. The 41 projects, including 10 on CCS and carbon capture The European Commission in June 2023 called Norwegian Petroleum Directorate has recently offered Wintershall DEA and CapeOmega an utilisation, in July 2023, with final grant decisions for evidence and public consultation on industrial carbon management to collect insights by late to be announced in Q4. exploration license for CO_2 storage in the North Sea.

August to feed into the preparation of a new EU

The world's first open-source CO₂ transport and communication on CCUS deployment due by **Connecting Europe Facility** storage infrastructure, Northern Lights , is expected year end. The strategy will cover what role these In addition to the Innovation Fund, several CCS technologies can play in decarbonising the EU projects have been funded as Projects of Common to be online by 2025 and is being built ready for economy by 2030, 2040, and 2050 and what policy Interest (PCI) that link the energy systems of EU expansion to accommodate increasing storage and regulatory measures are needed to optimise countries and can benefit from accelerated permitting demands. In the Netherlands, the Aramis project their potential, including the deployment of EU-wide procedures and access to funding through the will allow several CO₂ storage sites to connect Connecting Europe Facility, an EU subsidy scheme CO_2 infrastructure. to its offshore transport backbone. that co-finances and supports investments in the trans-European Network for Energy (TEN-E network). Several European governments offer explicit **CCS** Directive Guidance Document review The Directorate-General for Climate Action (DG Six CO₂ transport projects were included in the 5th policy support for CCS through its inclusion in their CLIMA) is working towards revising the CCS Directive PCI list published in November 2021, five in the national decarbonisation strategies and/or through Guidance Documents to reflect the global state of North Sea and one in Poland. Three industrial CO. dedicated subsidy. Denmark, Norway and the play of CCS and remove ambiguities identified during capture and storage proposals have been selected Netherlands are also leading the way in developing for funding under the Connecting Europe Facility and implementing rules for CO₂ storage and the development of the first projects in the European Economic Area. Capacity-building workshops will be (Antwerp@C CO₂ Export Hub, Ghent Carbon Hub transport licenses. organised for Member States in early 2024. and D'Artagnan hub).

5.0 ANALYSIS


Funding

Country policies and projects

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Denmark

Denmark continues to develop CCS regulations and move towards implementation with speed. It aims to become a European CCS Hub with a total expected capacity of up to 52 Mtpa in 2030-2032. The Danish Ministry of Climate, Energy and Utilities in 2023 has granted the first three exclusive licenses for exploration of full-scale CO_2 storage in the Danish North Sea. The government is supporting CO₂ storage and capture development through subsidies, with €3.6 billion allocated for two tenders to store an estimated 3.2 million tonnes of CO₂ per year from 2029 through CCS projects. The European Commission has approved €1.1 billion for a Danish scheme that will contribute to the roll-out of CCS technologies in the country.

The government had awarded three full-scale exploration permits for offshore storage as of early February 2023. A TotalEnergies-led consortium (with Noreco, Nordsøfonden, Ørsted, DTU etc.) has received two exploration licenses, with expected storage capacities of 2-3 Mtpa in 2029-2030 and of 10-15 Mtpa in 2030-2032. An INEOS-led consortium (Maersk Drilling, GEUS, Wintershall DEA etc) has received both a pilot storage permit and a full scale exploration permit, kicking off the world's first crossborder offshore CCS transport and storage value chain, which will have an expected storage capacity of up to 1.5 Mtpa in 2025 and up to 8 Mtpa by 2030. Onshore storage is also being considered, at least as temporary storage before CO₂ is transported for permanent offshore storage in the Danish North Sea.

On the capture side, the Danish Energy Agency received final offers in the first round of its CCUS subsidy scheme and awarded approximately half of its DKK 216 billion fund to Ørsted Bioenergy & Thermal Power in support of their capture and storage of at least 400,000 tonnes of CO₂ per year starting from 2026 for 20 years.

52 Mtpa

Denmark's total expected storage capacity in 2030-2032 under its plans to become a European CCS hub.

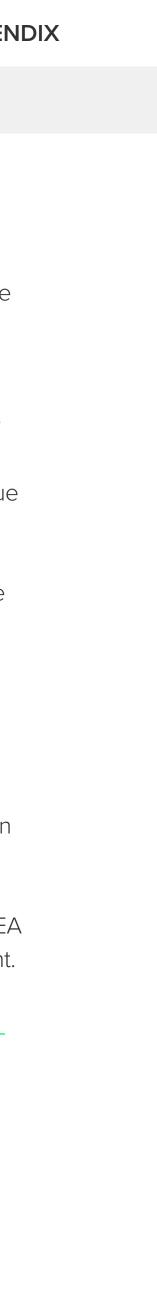
5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Norway

Credit: Brevik Heidelberg Capture Plant, image courtesy of Aker Carbon Capture


Progress on Norway's full-scale CCS project Longship continues, which is owned by Equinor, Shell and TotalEnergies. Longship includes two capture plants and aims to capture and store 5 million tonnes of CO_{2} per year. The government is providing support of US\$2.3 billion support to the project.

Northern Lights has completed well drilling and started production of its ships. The Heidelberg Materials Brevik cement plant, which reports being on schedule and on budget, is expected to launch operations in 2024 and is thus on track to become the world's first commercial cement factory equipped with CCS. The Celsio Oslo waste to energy facility, which will also receive CO_2 transport and storage services from Northern Lights, has paused the installation of the capture plant following receipt of higher than expected cost estimates.

After developing the commercial crossborder CO₂ T&S agreement last year with Yara, Northern Lights has signed another international agreement. It will be partnering with Orsted for the commercial transport and storage of 430,000 tonnes of biogenic CO₂ per year for 10 years. According to verbal reports from Equinor and Gassnova, the Northern Lights capacity is now fully booked. Equinor is leading the planning behind a larger project covering the whole CCS value chain known as the EU2NSEA project, which is an applicant of the European Commission's PCI list and aims to connect CO_2 emitters in Europe with storage sites in the North Sea by pipeline, with an expected capacity to transport and store 30-40 Mtpa of CO₂.

Norway has also started awarding other exploration and storage licenses to expand its CO₂ storage capacity to meet growing demand in Europe. Other storage projects underway are Poseidon (exploration license) as well as Luna, Smeaheia and Havstjerne (storage licenses). The floating injection unit being proposed by Altera Infrastructure and Wintershall DEA for the Havstjerne license is an exciting development.

Expected capacity of EU2NSEA project to transport via pipeline and store CO₂ in the North Sea.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

The Netherlands

Credit: Twence Capture Plant, image courtesy of Aker Carbon Capture

The Dutch government has continued to reward early deployment of CCS in 2023, along with other green technologies, through its SDE++ subsidy. A new round was opened in June 2023 with a budget of \in 8 billion that will, if the whole budget is fully allocated, realise up to 4 Mtpa of CO_2 stored by 2030. The new envelope for this scheme was approved by the European Commission under EU state aid rules in July.

In August the highest administrative court in the Netherlands, the Council of State, gave its final decision on the Porthos Project. It concluded that the nitrogen oxide emissions during construction would not have a significant impact on nearby natural areas. The Porthos Project is now set to proceed to FID after this positive ecological assessment.

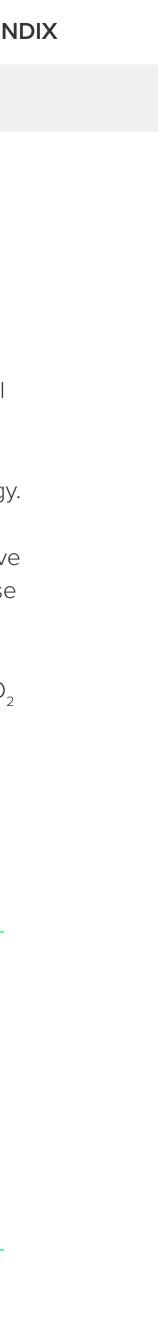
The Aramis project, a joint initiative between TotalEnergies, Shell, Energie Beheer Nederland (EBN) and Nederlandse Gasunie that will offer CO₂ transport infrastructure from Rotterdam to multiple storage fields in the high North Sea, appears to be fully subscribed for the first 5 Mtpa of CO₂ of capacity. Nine Heads of Terms have been signed. While non-binding, they contain an exclusivity clause in return for a provisional capacity reservation. The full-scale project will provide 22 Mtpa capacity for CO₂ transport and offshore storage.

Neptune Energy is pushing ahead with the L10 storage project that is expected to be able to take CO₂ supplied through the Aramis pipeline as well as by ships. L10 has the potential to safely store 120-150 million tonnes of CO_2 . Currently in FEED, FID is expected by the end of 2023 with first CO_2 injection in 2026.

4 Mtpa Volume of CO₂ stored by 2030 if the Dutch government's latest round of subsidies is fully allocated. **5.0 ANALYSIS**

6.0 FACILITIES LIST

Belgium


Belgium is emerging as an active player in the CCS market. The Flemish government in April 2023 approved the first version of its regulatory framework for CO₂ transport, laying down rules on the management of the future CO_2 networks, after deeming CCS one of the most promising instruments to reduce emissions in Flanders in its long-term strategy for the region. At the national level, given the lack of available local storage sites, the government has intensified international cooperation.

The Antwerp@C CO₂ Export Hub project aims to develop an open-access modular infrastructure for the transport, liquefaction, and export of CO₂ captured by industries in the Antwerp port area and it has secured €145 million in funding from the Connecting Europe Fund.

The hub will have an initial export capacity of 2.5 Mtpa, with the ambition to reach up to 10 Mtpa by 2030. The BASF/Air Liquide plant is the biggest local emitter.

ArcelorMittal in Ghent has inaugurated its Steelanol CCU project which recycles carbon-rich industrial waste gases into advanced bioethanol by way of a novel microbe induced gas-fermentation technology. Holcim has started the first phase of its Go4Zero project, an innovative, pollutant-free carbon negative clinker plant coupled with a CCS solution. Carmeuse has received EU funding for its Columbus CCU project which targets the avoidance of direct CO_2 emissions from lime production by transforming CO_2 into e-methane. Both projects have been awarded support from the 2023 EU Innovation Fund.

2.5 Mtpa Initial capacity of Antwerp@C CO₂ Export Hub.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC

4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

United Kingdom

The UK government in March 2023 made a new CCUS funding commitment in its Spring Budget. It aims to invest £20 billion for the early development of CCUS technology, as part of its broader target to reach net zero by 2050, which was signed into law in 2019. The target is to capture 20 - 30 million tonnes of CO_2 per year. This builds on the government's cluster sequencing process, to build first-of-a-kind capture networks in the UK. The Hynet Cluster (North-West England and Wales) and the East Coast Cluster (Humber and Teesside) were selected as part of Track-1 of that process. Recently, the government announced that the Transport and Storage systems Acorn CCS (North-East Scotland) and Viking CCS (Humber) will form the next two clusters as part of Track-2.

The government through a Dispatchable Power Agreement (DPA) to support power generation with CCS aims to:

- Incentivise power CCUS to operate flexibly, dispatching after renewables and nuclear, but ahead of other unabated power plants as part of a flexible electricity system;
- Have the capacity to be competitively allocated;

- Provide fair return on investment with appropriate risk allocation and without overcompensation;
- consumers.

• Ensure costs are affordable for electricity The German government is developing a Carbon France released its CCUS Strategy in summer 2023 as part of government efforts to reach carbon Management Strategy for CCS, which it considers neutrality by 2050, which notes that CCUS could essential to achieve its carbon neutrality objective have the potential to capture and store 4-8.5 Mt of The Department for Energy Security and Net Zero by 2045. The strategy is due for publication by year has selected the final eight projects to proceed CO₂ emissions per year by 2030. CCUS deployment end. The country's Ministry of Economics and Climate to negotiations for support through the relevant in the country will be conducted in three stages and Protection in December 2022 released an evaluation focused on industrial zones such as Dunkergue, of the Carbon Dioxide Storage Act, 10 years after the Business Models: Le Havre, Fos-sur-Mer, Lacq/Sud-Ouest, Loirelaw was passed to frame the first demonstration CCS • The East Coast cluster projects are Net Zero Estuaire and Grand Est. To support project projects in Germany. Teesside Power (gas fired power), H2Teesside developers and scale up CCS deployment, the government will launch a call for tenders through a Germany has launched a €50 billion bid to (low carbon hydrogen) and Teesside Hydrogen decarbonise its heavy industry. Following a CO₂ Capture. Contracts for Difference scheme. Under the strategy, a framework for CO₂ transport will be developed, and preparatory phase starting in June 2023, it plans to introduce Carbon Contracts for Difference (CCfDs) • The HyNet Cluster projects are Hanson geological storage sites will undergo pilot testing Padeswood (cement), Viridor Runcorn (waste-tofrom 2024-2025 onwards. that compensate energy-intensive companies for energy), Protos Energy (waste-to-energy), Buxton emission reductions.

- Net Zero (lime) and HPP1 HyNet (hydrogen).

The 2023 Innovation Fund call has awarded funding to a full-value chain, full-scale carbon project In 2022, the North Sea Transition Authority (NSTA) launched the UK's first ever carbon storage licensing from HeidelbergMaterials in Geseke (North Rhineround – likely to be the first of many – and received Sweden promotes negative carbon dioxide Westphalia). The CO_2 will be transported by rail to a 26 bids for 13 areas offered. In May 2023, the geologic storage site under the North Sea. The Fund emissions/BECCS through its Industrial Leap offer of awards for 20 carbon storage licences program that supports the transition to net-zero also awarded funding to nearby lime plant Rheinkalk were made to 12 different companies. If accepted, emissions of greenhouse gases by 2045 and for its decarbonisation project. these new carbon storage areas, alongside the six negative emissions thereafter. licences which have been issued previously by the NSTA, could have the ability to make a significant The country's Cementa plant from HeidelbergMaterials contribution towards the aim of storing 20-30 million in Slite, Gotland aims to develop the world's first tonnes of CO_2 per year by 2030. carbon-neutral cement plant by capturing and storing the Slite plant's total emissions of 1.8 Mt of CO_{2} , equating to around 3% of Sweden's total emissions. 46

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

France

Sweden

Germany

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC

4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Eastern and Southern Europe

The first phase of the Eni/Snam Ravenna CCS Hub in northern Italy is taking shape, with the phase 1 storage license granted and operations expected to start in Q1 2024 for injection into a depleted offshore gas field. The project is expected to start with capturing emissions from Eni's natural gas treatment plant.

HeidelbergMaterials has secured €190 million from the EU Innovation Fund for its ANRAV project in Varna, Bulgaria, which intends to store CO₂ under the Black Sea. Other companies to have secured funding from the 2023 Innovation Fund include Holcim's KOdeCO project in Croatia and Motor Oil Hellas' IRIS project and Titan Cement's IFESTOS project in Greece for likely storage in the Prinos basin from Energean.

In Katowice, Poland, a new cluster is emerging around local emitters in the cement, lime, fertiliser, zinc and power sectors.

Transport infrastructure

Transporting CO₂ by ship is crucial for large-scale CCS deployment in Europe, enabling flexibility for connecting emitters in Europe with permanent Pipelines storage offshore and encompassing both cross-Pipelines continue to dominate as the preferred way to transport CO_2 from capture facilities to border CO₂ shipment and domestic projects. storage facilities. Pipeline infrastructure projects Transport of CO₂ by ship has been recognised as essential both at the EU level – in the European currently in development in Europe include: Taxonomy for Sustainable Activities and the EU • Aramis (Netherlands), for which the preparation ETS Directive – and at a national level, including phase is almost complete. Once the preferred the Dutch SDE++ subsidy scheme and UK options for the pipeline route and landing location CCUS programme.

- have been determined, the project can enter the FEED phase, after which the FID will be made.
- Belgian gas operator Fluxys is planning a CO₂ network inside and out of Belgium to international storage locations.
- The Netherlands' Gasunie, Shell, BASF and OGE are in the feasibility stage of a similar network between Rotterdam and the Ruhr area in Germany.
- Equinor and Fluxys have unveiled plans for a CO₂ pipeline from Belgium to Norwegian offshore storage sites.
- Equinor and Wintershall Dea are collaborating on infrastructure for the transportation, injection and storage of CO_2 from Germany to Norway.
- A new 1,000 km onshore pipeline project by OGE in Germany will connect industries to the port of Wilhelmshaven.

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

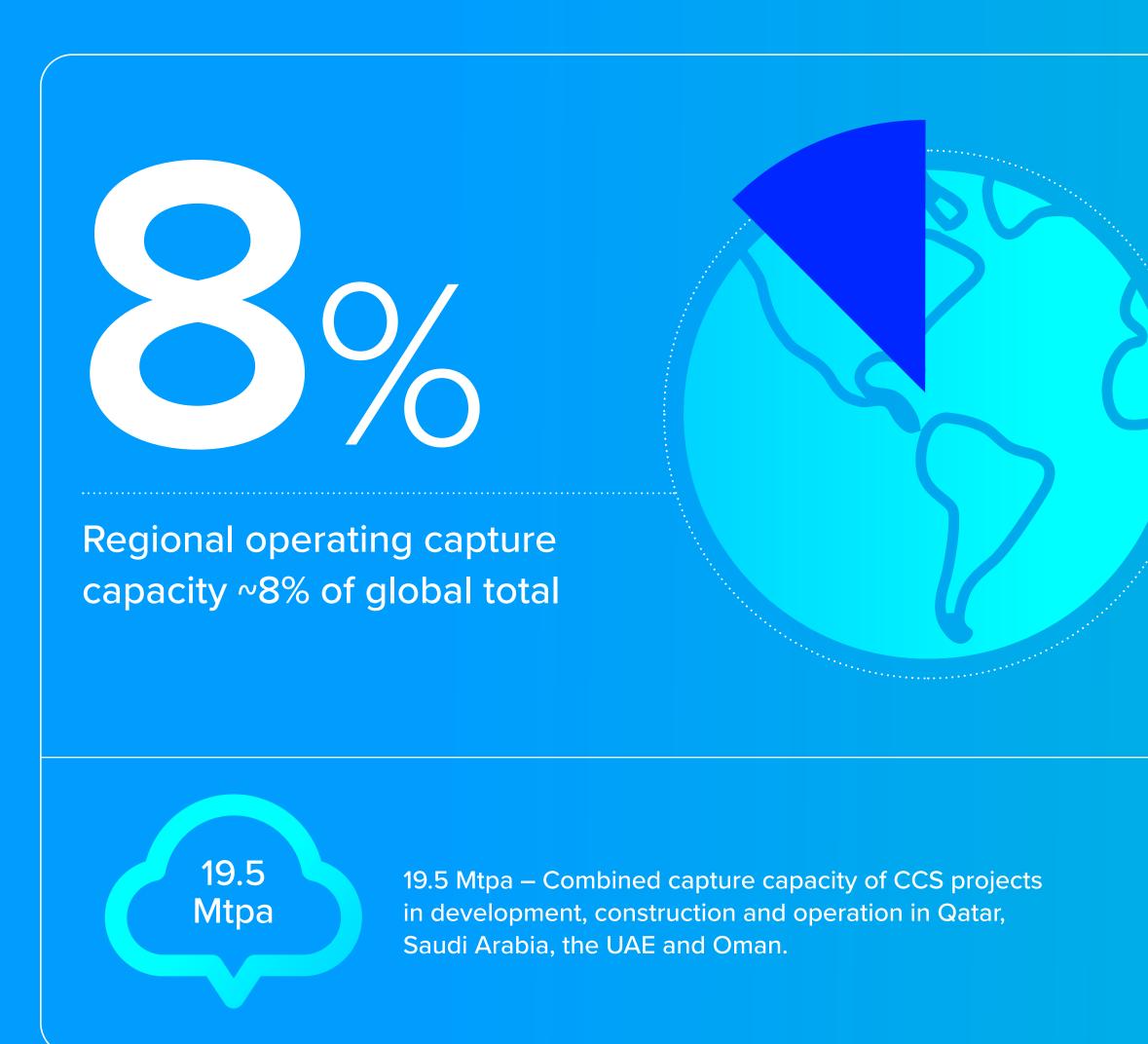
Shipping

The Northern Lights CO₂ storage project in Norway, Aramis CO₂ infrastructure project in the Netherlands and D'Artagnan and Grand Ouest CO₂ projects in France include ships for CO₂ transportation. Shipping CO_2 has also emerged as a popular project proposal under the EU PCI program, with about 15 import or export terminals referenced in PCI descriptions.

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

Bilateral agreements

A list of agreements, declarations and memoranda are being developed across Europe to facilitate cross-border collaboration and transportation of CO_2 . Specifically, Denmark and Norway are looking to position themselves as CO₂ storage hubs for Europe and neighbouring countries are turning to them for CO₂ storage opportunities. Table 4.3–1 shows the current list of bilateral agreements in Europe.



5.0 ANALYSIS

Denmark	France	Germany	Iceland	Netherlands	Norway	Sweden	Switzerland	UK
<u>MoU</u>		<u>Agreement</u>		<u>MoU</u>	<u>Negotiations</u> for bilateral agreement			
		<u>Declaration</u> <u>of Intent</u>		<u>MoU</u>	<u>MoU</u>			<u>MoU</u>
				<u>Pact</u>	<u>Letter</u> <u>of Intent</u>			
<u>Declaration</u> of Intent					<u>Declaration</u> to cooperate			
							<u>Declaration</u> <u>of Intent</u>	
<u>MoU</u>	<u>Pact</u>				<u>Mou</u>		<u>MoU</u>	
<u>MoU</u>	<u>Letter</u> <u>of Intent</u>	<u>Declaration</u> to cooperate		<u>Mou</u>		<u>MoU</u>	Exploring collaboration	<u>MoU</u>
					<u>MoU</u>			
			<u>Declaration</u> <u>of Intent</u>	<u>MoU</u>	Exploring collaboration			
<u>MoU</u>					<u>MoU</u>			

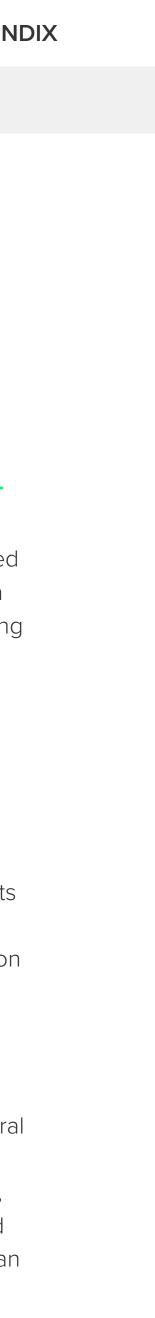
4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

COP28

Hosting COP28 turns spotlight on region's commitment to sustainability – making adoption of CCS even more pressing and attractive.

11 Mtpa

Saudi Aramco targets storing 11 Mtpa by 2035.


4.4 MIDDLE EAST & AFRICA

Overview

Carbon capture and storage has already established a significant presence in the Middle East and Africa region, accounting for approximately 8% of operating global capture capacity, but is now on the cusp of a remarkable uptrend, driven by several factors.

The first factor is the increasing recognition of the urgent need to address climate change and reduce greenhouse gas emissions. The United Arab Emirates (UAE) and Saudi Arabia have made strong commitments by announcing net-zero targets for 2050 and 2060, respectively. These ambitious goals serve as catalysts for the accelerated adoption of CCS technologies by providing a roadmap for transitioning towards a low-carbon future.

The second factor is the emergence of low-carbon hydrogen as an export market. With abundant natural gas, geological storage resources, renewable energy, and existing expertise in the energy sector, the Middle East and Africa region is well positioned to capitalise on the growing global demand for clean hydrogen. By leveraging CCS to capture and store

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

carbon emissions from hydrogen production, the region can rapidly offer commercial quantities of low carbon hydrogen, facilitating economic growth and sustainability simultaneously.

There is also a strong emphasis on industrial diversification in the region, aiming to foster clean and competitive growth. This diversification strategy involves reducing the carbon footprint of existing industries and developing new sectors aligned with sustainability goals. Regional initiatives have been launched, such as the Middle East Green Initiative led by Saudi Arabia, which seeks to enhance environmental preservation and promote sustainable development.

Entities like Saudi Aramco have emphasised sustainability in their operations and published comprehensive sustainability reports outlining their commitment to CCS, with a stated target of 11 million tonnes CO₂ per year by 2035. Collaborative efforts are also underway including the Alliance for Industry Decarbonization (AFID), which brings together public and private stakeholders to accelerate the deployment of Bioenergy with CCS (BECCS) and other decarbonisation solutions across multiple industries.

With favourable conditions, strong commitments and a comprehensive range of initiatives, the Middle East and North Africa region is well positioned to significantly increase CCS deployment and play a central role in global decarbonisation efforts, contributing to a sustainable and low-carbon future.

Policy

The deployment of CCS in the power sector is gaining increasing interest in the region as numerous countries actively seek to integrate CCS technologies into their power generation infrastructure with the aim of reducing emissions arising from fossil fuel-based electricity production.

Moreover, CCS aligns with the region's focus on sustainable development and diversification of economies. By investing in CCS infrastructure, the Middle East and Africa can position themselves as leaders in the global efforts to mitigate climate change. These actions demonstrate their commitment to addressing climate challenges while ensuring the sustainability and competitiveness of their industries.

In parallel, regional voluntary carbon market initiatives that promote CCS projects and carbon offset mechanisms can further enhance the region's commitment to addressing climate challenges. These initiatives provide opportunities for companies

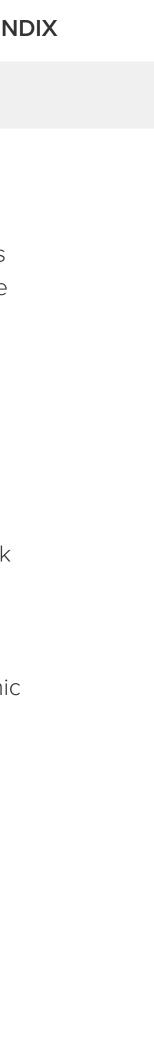
and organisations to voluntarily go beyond regulatory In the UAE, ADNOC's CCS projects are being implemented in multiple phases, with 0.8 Mtpa requirements and actively participate in mitigating of CO₂ captured at AI Reyadah the Emirates climate change. Steel plant in Abu Dhabi as Phase 1. ADNOC estimates that Phase II and Phase III will capture approximately 5 Mtpa of CO_2 before 2030, with Projects sources including the Shah sour gas plant (2.3 Mtpa) and the Habshan-Bab gas processing CCS projects (in development, construction and operating) in the Middle East and Africa are located facility (1.9 Mtpa). in Qatar, Saudi Arabia, the UAE and Oman, with a

5.0 ANALYSIS

6.0 FACILITIES LIST

combined annual capture capacity of 19.5 million tonnes per annum (Mtpa) of CO_2 .

In Qatar, Qatar Gas captures 2.1 Mtpa of CO₂ from the Ras Laffan gas liquefaction plant and plans to increase the capture rate to 5 Mtpa by 2025, driven by the announcement of the North Field expansion, the world's largest liquefied natural gas (LNG) project. In Saudi Arabia, Saudi Aramco captures 0.8 Mtpa of CO₂ at its Hawiyah Naturals Gas Liquids plant, utilising the captured CO_2 to demonstrate the viability of enhanced oil recovery (EOR) at the Uthmaniyah oil field.


The Al Jubail CCUS industrial hub in Saudi Arabia, a collaboration between Saudi Aramco, SLB, and Linde that aims to capture and store CO₂ emissions from industrial facilities, targets capturing 9 Mtpa by 2027 and 44 Mtpa by 2035. The first of its kind in the region, the hub highlights the kingdom's commitment to CCS, fostering sustainable development and demonstrating a commitment to climate change mitigation.

There are also two CO₂ utilisation facilities in the region; Saudi Basic Industries Corporation captures 0.5 Mtpa of CO₂ at its Jubail ethylene facility for use in methanol and urea production and Qatar Fuel Additive Company captures 0.2 Mtpa of CO₂ at its methanol refinery.

It is worth noting that there are additional smallerscale CCS initiatives and projects. ADNOC announced its first CO₂ sequestered injection project and partners with 44.01 to turn CO_2 into rock via mineralisation technology. The King Abdullah University of Science and Technology, ENOWA, NEOM's Energy & Water company and the Saudi Electricity Company are collaborating on a cryogenic carbon capture technology pilot project to capture 30 tonnes of CO_2 per day.

Moreover, Saudi Arabian Mining Co. (Maaden) has signed an agreement with Gulf Cryo to build and operate a new CO₂ plant in its phosphate comple in Ras Al Khair that will capture 300,000 tonnes of CO₂ emissions per year from Maaden's three ammonia plants.

Qatar Gas captures 2.1 Mtpa of CO₂ from the Ras Laffan gas liquefaction plant and plans to increase the capture rate to 5 Mtpa by 2025.

3.0 GLOBAL STATUS OF CCS

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK

Egypt possesses significant onshore storage capacity in saline aquifers, allowing for CO₂ storage without costly offshore infrastructure.

Moreover, Saudi Arabian Mining Co. (Maaden) has signed an agreement with Gulf Cryo to build and operate a new CO₂ plant in its phosphate complex in Ras Al Khair that will capture 300,000 tonnes of CO₂ emissions per year from Maaden's three ammonia plants.

The interest in the deployment of CCUS hubs is gaining major interest. The Global CCS institute with support from the Oil and Gas Climate Initiative (OGCI) has conducted a study to examine Egypt's potential for developing CCS hubs to reduce industrial CO₂ emissions, which covered all elements related to policies, regulations, storage capacity, economics and hubs potential. The study concluded that Egypt has potential for large-scale CCS projects, enabling the reduction of CO_2 emissions and supporting the development of low-emission industries, including clean hydrogen production.

Egypt possesses significant onshore storage capacity in saline aquifers, allowing for CO_2 storage without costly offshore infrastructure. The CCS hubs would significantly bolster Egypt's climate change commitments – ultimately contributing 100 Mtpa of reductions – reducing Egypt's emissions an additional 25% from its stated goals in its NDC and climate strategy and putting the country much closer to a CO_2 pathway fully compatible with the long-term Paris Agreement goals.

The CCS hub infrastructure can also help develop clean hydrogen in addition to Egypt's ambitious plans for renewable hydrogen, set to begin coming online around 2030. For example, low-carbon cement exports to the EU and elsewhere may be an opportunity for Egypt by capturing and storing CO₂ in cement production.

Two CCS hub models were considered: a pipeline transport model utilising existing infrastructure and a local hub model with storage near compression sites. The pipeline CCS hub cost was estimated at US\$85 per tonne of CO_2 , while the costs of local CCS hubs ranged from US\$53-150 per tonne of CO₂, offering potential benefits with fewer pipelines and lower compression costs (Figure 4.4–1). These costs are for the full CCS value chain; CO₂ capture, compression transport and geological storage.

The cost of clean hydrogen production at Damietta, part of a CCS hub, was estimated to be slightly over US\$2.25 per kg. Lower costs of capital, electricity and CO₂ injection can further reduce hydrogen production costs. In addition, the analysis emphasises the importance of early development and supportive policies for CCS projects in Egypt to effectively manage CO₂ emissions and support the country's net-zero strategies.

4.0 REGIONAL OVERVIEW

6.0 FACILITIES LIST

4.4 REGIONAL OVERVIEW: MENA

for the Egypt local CCS hubs

4.1 REGIONAL OVERVIEW: AMERICAS 4.2 REGIONAL OVERVIEW: ASIA-PACIFIC 4.3 REGIONAL OVERVIEW: EUROPE AND THE UK 4.4 REGIONAL OVERVIEW: MENA

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Outlook

The positive outlook for CCS in the Middle East and Africa is maintained by several factors, including the region's positioning and the wealth of opportunities it presents. As the host of COP28 in 2023, the region has an opportunity to showcase its commitment to addressing climate change and the significant role CCS can play in achieving global emission reduction goals.

The engagement of the Global CCS Institute in the region further emphasises the growing momentum for CCS. With the establishment of a new office, attracting new members and the successful inaugural MENA region CCS forum and member meeting held in the UAE, early signs of collaboration and progress are emerging. The involvement of key stakeholders and industry players underscores the region's readiness to embrace CCS as a crucial solution.

There is a shared expectation that CCS project activities will become more prevalent in the short term. The urgency to mitigate climate change, combined with the region's abundant resources and carbon-intensive industries, provide incentive to invest in CCS technologies and infrastructure.

Additionally, the technical scope for CCS implementation in the Middle East and Africa is substantial. Leveraging existing infrastructure, such as natural gas fields and industrial clusters, provides a foundation for integrated CCS projects capable of capturing and storing significant amounts of CO_2 emissions.

As the region prepares to host COP28, the spotlight will be on the Middle East and Africa's commitment to sustainability, making the adoption of CCS a pressing and attractive proposition.

3.0 GLOBAL STATUS OF CCS

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

5.5 MANAGING LONG-TERM LIABILITY 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

5.1 THE VALUE OF CCS IN A NET-ZERO WORLD

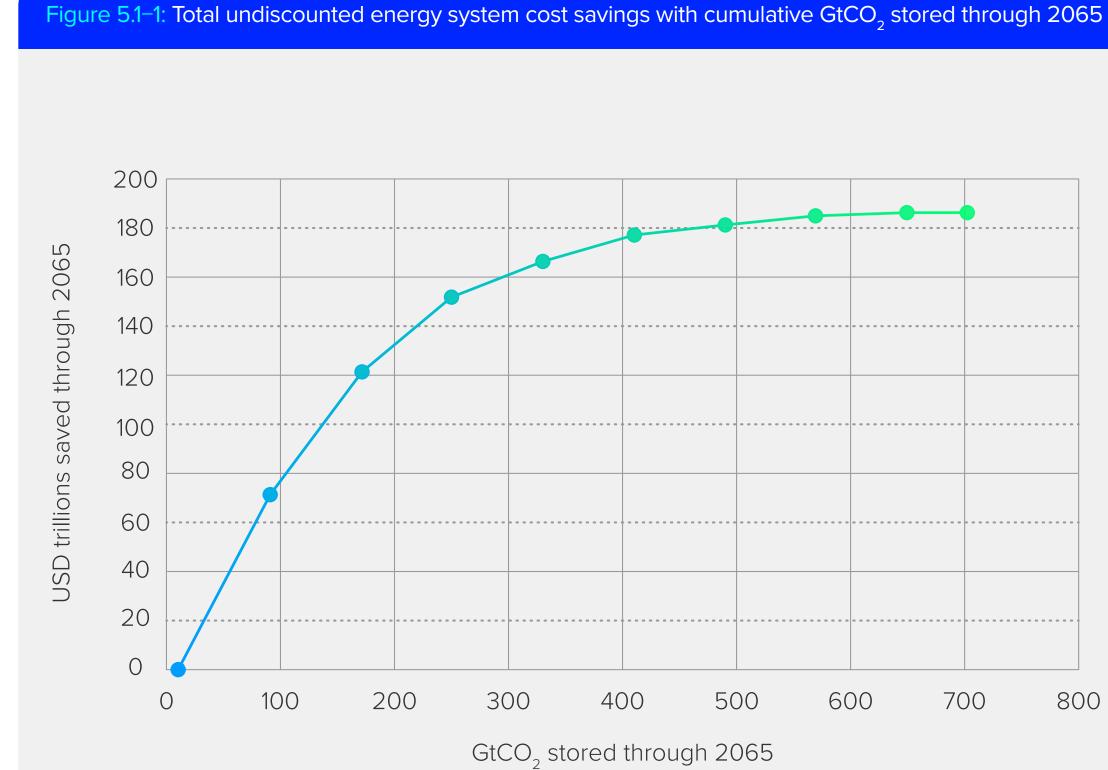
CCS is critical in reaching net zero climate targets. The International Energy Agency says that "achieving net-zero goals will be virtually impossible without CCUS". However, while much has been written on the cost of CCS, the literature on quantifying the value of CCS in reaching those targets is limited.

A few recent papers explore the value of CCS. Ganzer & Dowell found CCS in industry and the power sector can significantly increase Gross Value Added (GVA) economic productivity in the UK compared against moving production offshore and not deploying CCS. Another paper by Sabraveti et al. considered how CCS can be used through the value chain for materials needed to construct a bridge and found that CCS can reduce the value chain emissions by 51% while increasing the cost of the bridge by only 1%.

However, few studies attempt to evaluate the value of CCS for the whole energy system.

In 2014, the Energy Modelling Forum 27 (EMF27) conducted a series of modelling scenarios for reaching 450 ppm, including scenarios with and without CCS; results were published in a special issue of Climatic Change, Volume 123, issue 3-4, April 2014.

IPCC AR5 included analysis of these scenarios, concluding that without CCS, the cost of reaching 450 ppm is expected to be 138% more expensive (in the range of 29%-297%) than achieving 450 ppm with CCS.


The Global CCS Institute has developed the Global Economic Net Zero Optimisation (GENZO) model. GENZO has 23 regions and a detailed representation of the global energy system with a full suite of zero and low-carbon technology options. A description of the GENZO model can be found here.

We present results from GENZO that provide insight into the global value of CCS. Given the default assumptions in the model, including pledged netzero targets, we find that the optimum storage of CO₂ through 2065 is a cumulative 703 GtCO₂, which includes a mix of fossil CCS, BECCS and DACCS. Fossil CCS includes combustion and process CO₂ emissions for processes that utilise fossil fuels as opposed to biomass. We also find that the absolute minimum cumulative CO_2 stored for the model to meet those net zero targets is 10 $GtCO_2$.

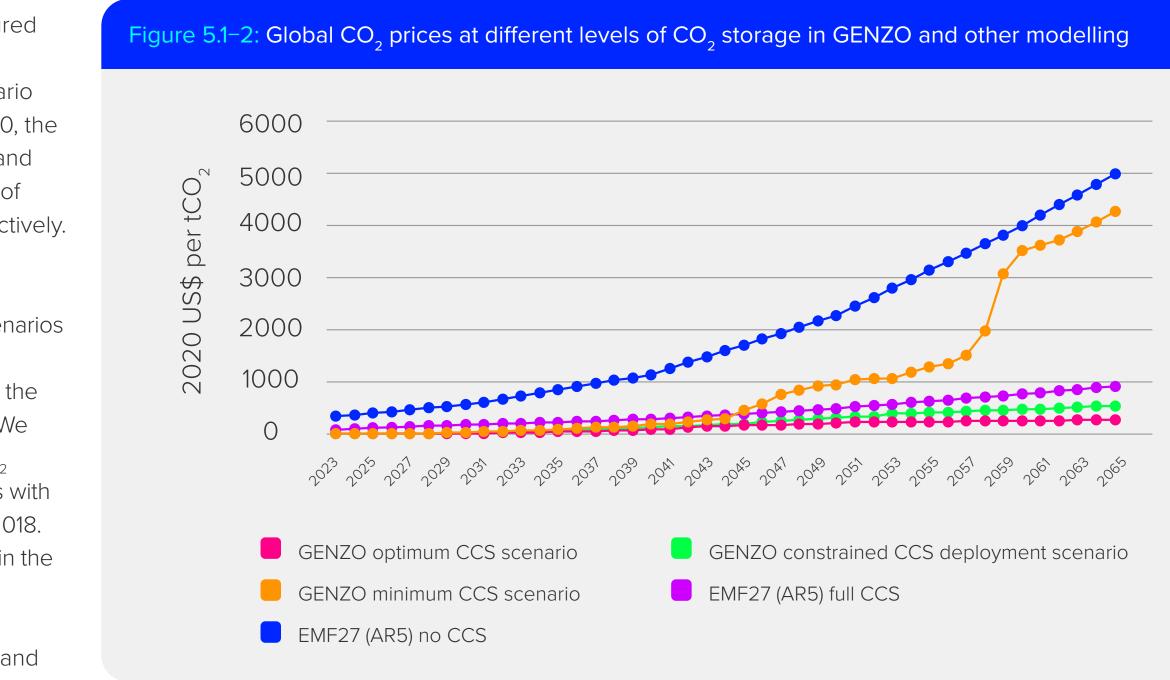
5.0 ANALYSIS

6.0 FACILITIES LIST

5.5 MANAGING LONG-TERM LIABILITY 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

Interestingly, to achieve the climate targets at only 10 GtCO₂ stored, an additional 28 GtCO₂ is captured using BECCS and DACCS to create net zero-carbon synthetic fuels. We then limit the cumulative CO₂ stored in increments between the optimum and the minimum to understand how the total cost of the energy system changes. In these scenarios, we assume that regions can trade emission reduction credits.

The model also allows for CO_2 to be shipped and stored in other regions if cost-effective to do so. For the scenarios with CO₂ storage limits, GENZO finds the best time and region to store the allowed quantity of CO_2 . We find that CCS offers significant cost savings (Figure 5.1–2).


As we increase CO_2 storage from the minimum 10 $GtCO_2$, the cost savings are exceptional. From 10 $GtCO_2$ to 90 $GtCO_2$, we see US\$886 billion in savings per additional 1 GtCO₂ stored (US\$886 for each tonne of CO_2 stored), after accounting for all CCS-related costs. From 330 GtCO₂ to 410 GtCO₂ stored, our constrained CCS deployment scenario, we see diminishing savings of US\$135 billion per additional GtCO₂ stored (US\$135 per tonne CO₂ stored), while the constrained CCS deployment scenario (410 GtCO₂ stored) offers 95% of the savings potential of the optimal CCS scenario (703 GtCO₂ stored). By the time that we move from 650 $GtCO_2$ to 703 GtCO₂ stored, the marginal savings benefits are at less than US10 billion per additional GtCO₂ stored (US\$10 per tonne CO_2 stored).

For perspective, the annual mass of CO₂ captured in 2030 for the minimum scenario, constrained deployment scenario, and optimum CCS scenario is 40Mt, 1.07Gt, and 2.5 Gt respectively. In 2050, the annual mass of CO_2 captured is 80Mt, 12.8Gt, and 24.5 Gt respectively. In 2065 the annual mass of CO₂ captured is 1.5Gt, 22.3Gt and 35 Gt respectively.

We present the CO_2 prices for the minimum, constrained deployment, and optimum CCS scenarios in Figure 2. These are the prices that would be required to deliver net-zero commitments given the mix of technologies available in each scenario. We also plot for reference the inflation-adjusted CO_2 prices from the average of the EMF27 scenarios with and without CCS, as analyzed in Budinis et al., 2018. We estimate that the CO_2 stored through 2065 in the EMF27 scenario with full CCS is 465 GtCO_2 .

The EMF27 scenarios are almost 10 years old, and there have been significant developments in many low-carbon technologies and CCS technologies, such as direct air capture, which in the GENZO optimum CCS scenario plays a significant role scenarios also use a 450 ppm climate target, well-aligned. CCS clearly works to reduce CO_{2}

addition 28 GtCO₂ captured via DACCS and BECCS to create synthetic fuels) in order to reach climate targets at all. The more CO₂ that can be captured in effectively capping the CO₂ price. The EMF27 and stored, the lower the overall cost will be in whereas GENZO is based on pledged net-zero reaching climate targets up to the optimum level targets. Nevertheless, the resulting CO_2 prices are of storage. While 703 GtCO₂ is the optimum level of CO₂ to store based on the assumptions in the prices even as we meet stringent net-zero targets. GENZO model, even if we fall short at a little over half (410 GtCO₂) of the optimum level, we can still achieve goals, but enormously cost-effective. 95% of the potential cost savings worth approximately From our analysis, we can conclude that at least USD180 trillion between now and 2065. 10 GtCO₂ must be captured and stored (plus an

While government support of CCS in various jurisdictions, such as the United States, Canada, Norway, the UK and the Netherlands, is substantial – on a per tonne basis generally in the US\$70-90 range – the value created by these policies in fostering the first tonnes of CO_2 storage at scale is many times more than their cost, making CCS policy support not only critical to achieve climate

4.0 RE

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODE

5.2 DRIVERS OF CCS INVESTMENT

Investment in CCS and most other climate mitigation technologies is driven predominantly by government policy and regulation. The policy tools available are well established and in force to varying degrees in different jurisdictions. They all work to create economic value from climate mitigation investment and fall into the following broad categories:


- Emission trading systems (cap and trade, carbon offsets, baseline carbon credits).
- Carbon taxes.
- Direct or indirect subsidies such as tax credits, provision of loans, grants or loan guarantees.
- Command and control mechanisms that mandate the phased elimination of emissions.

All these mechanisms have the potential to drive demand for CCS if designed appropriately.

There have been several recent policy developments that have materially improved the invest-ability of CCS projects around the world, including the promulgation of the Inflation Reduction Act (IRA) in 2022 and the Bipartisan Infrastructure Law in 2021 in the United States and changes to the EU Emissions Trading Scheme with the Fit for 55 package in Europe.

To illustrate how targeted policy can support investment in CCS, this section presents a brief case study of clean ammonia/hydrogen production in the US.

EGIONA		5.0 ANALYSIS	6.0 FACILITIES LIS	5T 7.0 APPEN
DELS & TREI	NDS 5.4 GLOBAL TRANSPO	RT METHODS 5.5 MANAGING L	ONG-TERM LIABILITY 5.6 STOR	AGE RESOURCE DEVELOPMENT PRC
	Figure 5.2–1: Polices	that drive demand for CCS		
		Mechanism	Potential to drive demand for CCS	Incentive to abate
/e	Carbon markets (Cap and trade or baseline)	Increases the cost of emissions	Demand Up	Incentive Up
n	Carbon tax	Increases the cost of emissions	Demand Up	Incentive Up
	Subsidies/grants for abatement	Decreases the cost of abatement	Demand Up	Incentive Up
	Command and control	Mandates abatement	Demand Up	Incentive Up

5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS 5.1 VALUE OF CCS IN A NET-ZERO WORLD

US Gulf Coast clean ammonia/hydrogen production

The expected future growth in global demand for low-carbon energy carriers like hydrogen, ammonia and methanol as alternatives to coal and LNG for power plants and for bunkering fuel in maritime shipping has the potential to create a substantial market for these products.

In 2022, global trade of LNG was 409 million tonnes and global bunker fuel demand was 135.6 million tonnes. Replacing only 10% of the current demand for these fuels and not even including conventional natural gas and coal would require the production of more than 130 Mtpa of low-carbon ammonia. Replacing current ammonia production (195 million tonnes in 2022; 80% used for fertiliser) with clean ammonia would add even more demand.

Japan and South Korea are already actively investigating creating supply chains for clean ammonia or hydrogen and demand in Europe is likely to be driven by a rising carbon price. Based on this simple analysis, demand for clean ammonia could easily be tens of millions of tonnes per year within a decade.

The US has both the factors of production and the policy and regulatory environment necessary to support rapid growth in clean ammonia/hydrogen

production. The US Gulf Coast in particular has abundant natural gas resources proximate to high-quality geological storage resources for CO_2 . It also has ports and other essential infrastructure, a large existing petrochemical industry and a skilled workforce.

Following the promulgation of the IRA in 2022, the tax credit for the geological storage of CO_2 was increased to US\$85 per tonne over a 12year period and a new tax credit for low-carbon hydrogen production was introduced. The value of the hydrogen tax credit depends on its production emissions intensity, with the highest value being US\$3 per kg of hydrogen for emissions intensities of less than 0.45kg $CO_2/kg H_2$ over a 10-year period. A project can claim one credit or the other, but not both. There are also other significant financial support mechanisms for research and development and capital expenditure in the IRA, including a loan or loan guarantee program of more than US\$300 billion.

The result of this confluence of factors of production, targeted effective policy and expected robust future demand is the announcement of clean ammonia/hydrogen projects with a total capacity of over 30 Mtpa of ammonia in the US Gulf Coast (Table 5.2–2).

Table 5.2–2: Planned clean hydrogen/ammonia projects in the Gulf Coast

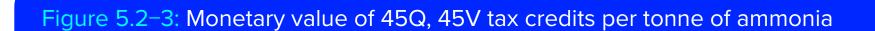
Facility	Product	Capacity (NH ₃) Mt/yr	Target operational commencement
CF Industries Blue Point*	Clean ammonia	1.2	2030
CF Industries Donaldsonville	Clean ammonia	1.2	2025
Linde Beaumont hydrogen plant	Clean ammonia	1.1	2025
Yara Hydrogen Texas	Clean ammonia	1.4	2027
Clean Hydrogen Works Ascension Clean Energy	Clean ammonia	7.2	2027
RWE Lotte Blue Ammonia Corpus Christi*	Clean ammonia	10	2030
Grannus Blue	Clean ammonia	0.15	2027
Air Products and Chemical Louisiana Clean Energy Complex	Clean hydrogen/ammonia	1.4	2026
ExxonMobil Baytown Low Carbon Hydrogen	Clean hydrogen/ammonia	6	2027
St. Charles Clean Fuels Hydrogen Louisiana	Clean ammonia	5	2027
Total		34.65	

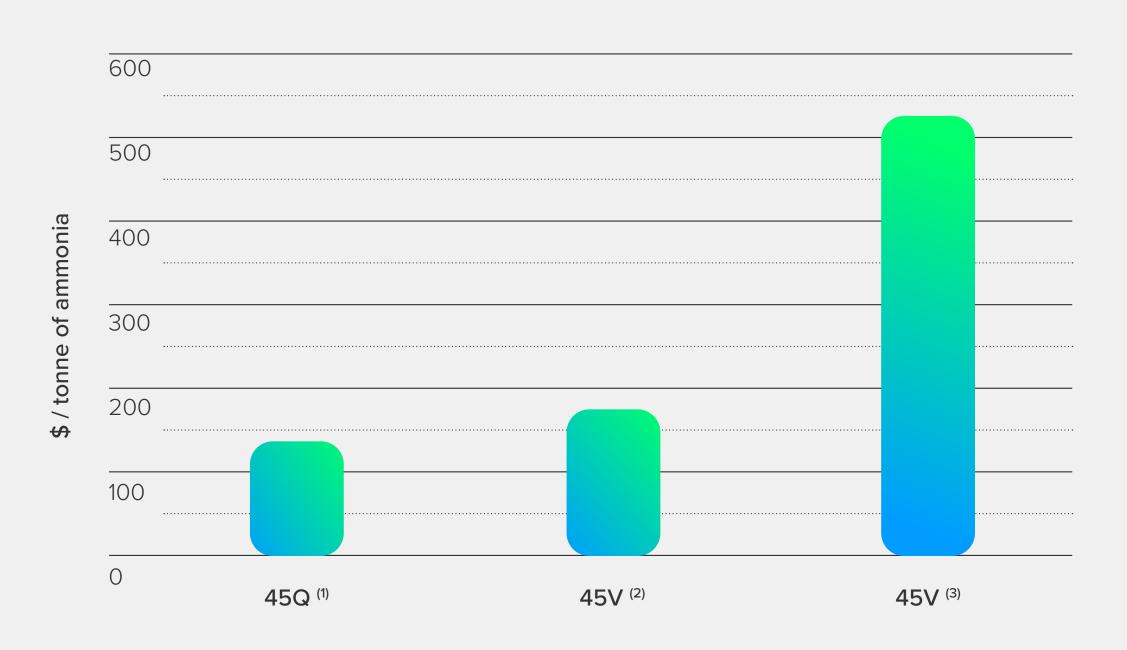
Source: GCCSI analysis

*These facilities are at the "announced" stage and do not contribute to facility statistics reported elsewhere in this report or appear in the facility list.

5.5 MANAGING LONG-TERM LIABILITY 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

Financial analysis


The following analysis calculates the annual rate of return on investment for a hypothetical clean ammonia production facility exporting to Europe. This analysis requires many simplifying assumptions, is indicative, not definitive, and must not be considered as investment advice.


The 45Q tax credit is effectively a US\$85 subsidy for each tonne of CO₂ captured and geologically stored for 12 years, the first five years of which are direct pay. The 45V tax credit is provided for producing clean hydrogen at varying rates depending on the life cycle CO_2 emissions during the production process. It is US\$1 per kg of hydrogen if the carbon content is between 0.45 kg and 1.5 kg of CO₂ per kg of hydrogen, which is assumed for this analysis. However, for hydrogen produced with a life cycle emissions intensity of less than 0.45 kg of CO_2 per kg of hydrogen, the subsidy triples to \$3 per kg of hydrogen.

A producer of clean hydrogen/ammonia can claim either the 45Q tax credit for the CO_2 captured and stored, or the 45V tax credit per kilogram of hydrogen produced, but not both.

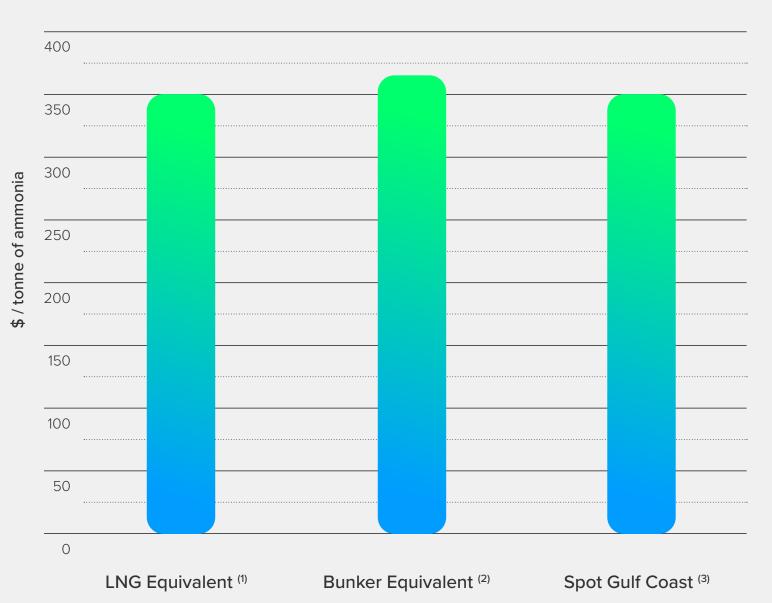
The value of these subsidies, per tonne of ammonia produced is shown in Figure 5.2-3.

The sale price of clean ammonia will depend on a number of factors. For the purposes of this analysis, we have assumed an equivalent price to LNG or bunker on an energy basis, and then corrected for CO_2 emissions during utilisation assuming an EU ETS price of Eur91 per tonne of CO₂. As ammonia combustion produces zero CO_2 emissions, this increases the potential price of clean ammonia. The Platts US Gulf Coast CFR Blue Ammonia spot price average for June 2023 is also shown for comparison in Figure 5.2-4 on the following page.

Contribution from 45Q and 45V tax credits 45Q and 45V are mutually exclusive

- 1 Based on 45Q Federal tax credit of US\$85 per tonne of CO captured and stored. The conversion to ammonia is based on an ammoniato-captured CO₂ ratio of 1:1.6
- 2 Based on 45V Federal tax credit of US\$1 per kg of hydrogen if CO₂ content per kg of hydrogen is between 0.45 and 1.5 kg
- 3 Based on 45V Federal tax credit of US\$3 per kg of hydrogen if CO. content per kg of hydrogen is less than 0.45 kg

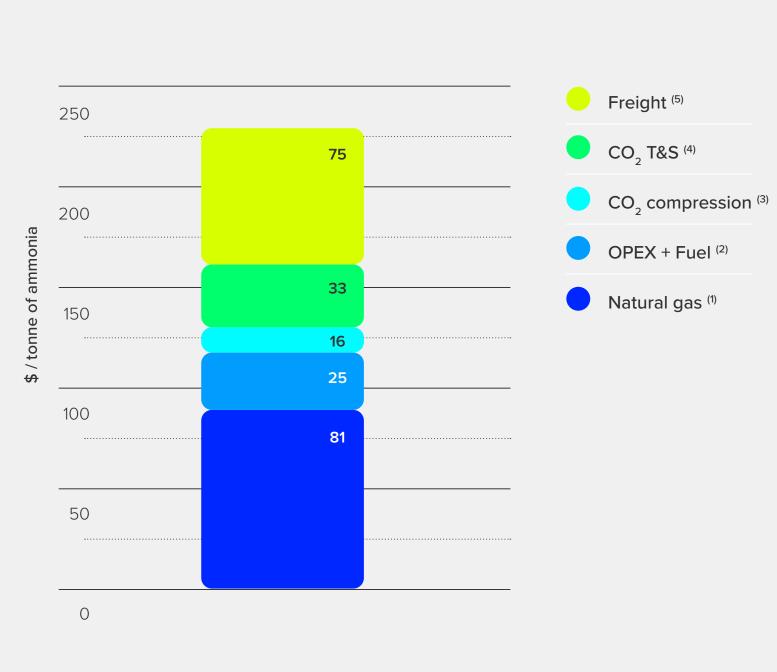
5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS


Assuming a clean hydrogen emissions intensity of between 0.45 kg and 1.5 kg of CO₂/kg of hydrogen providing a subsidy of US\$1 per kg of hydrogen, and the potential prices calculated above, sales of clean ammonia into Europe could generate total revenue of US\$530-550 per tonne.

These revenues appear attractive compared to an estimated operational cost of production and freight of around US\$240 per tonne (Figure 5.2–4).

Based on announcements by companies developing clean ammonia projects, the capital expenditure per tonne of ammonia production capacity is between US\$1,400 and US\$2,100. With these assumptions, the unlevered pre-tax internal rate of return is estimated to be between 10.2% and 17.4% with a 25-year economic life and 10-year tax credit.

This simple analysis illustrates how policy can incentivise investment in CCS. In this case, a production subsidy in the US combined with a carbon price in Europe and demand support in Asia contribute to sound returns on investment. Of course, this is a hypothetical case study based on many simplifying assumptions, however, the capital inflows into clean hydrogen/ammonia production on the US Gulf Coast support a conclusion that sound returns are available to investors in these projects, of which CCS is an essential component.


Figure 5.2–4: Hypothetical LNG and bunker fuel equivalent price of ammonia

- 1 Based on ammonia energy content of 18.8 MJ/kg, vs. LNG 50.0 MJ/kg, CO, emissions of 2.57 kg per tonne of LNG, LNG price of Eur45/MWh (TTF) and, ETS price of Eur91 per tonne of CO₂
- 2 Based on ammonia energy content of 18.8 MJ/kg vs. bunker 40.0 MJ/kg, CO₂ emissions of 2.94 kg per tonne of bunker, bunker price of US\$520 per tonne (Houston) and ETS price of Eur91 per tonne of $\mathrm{CO}_{_2}$
- 3 Spot blue ammonia price (Platts June 2023)

Figure 5.2–5: Operating cost estimates of ammonia production*

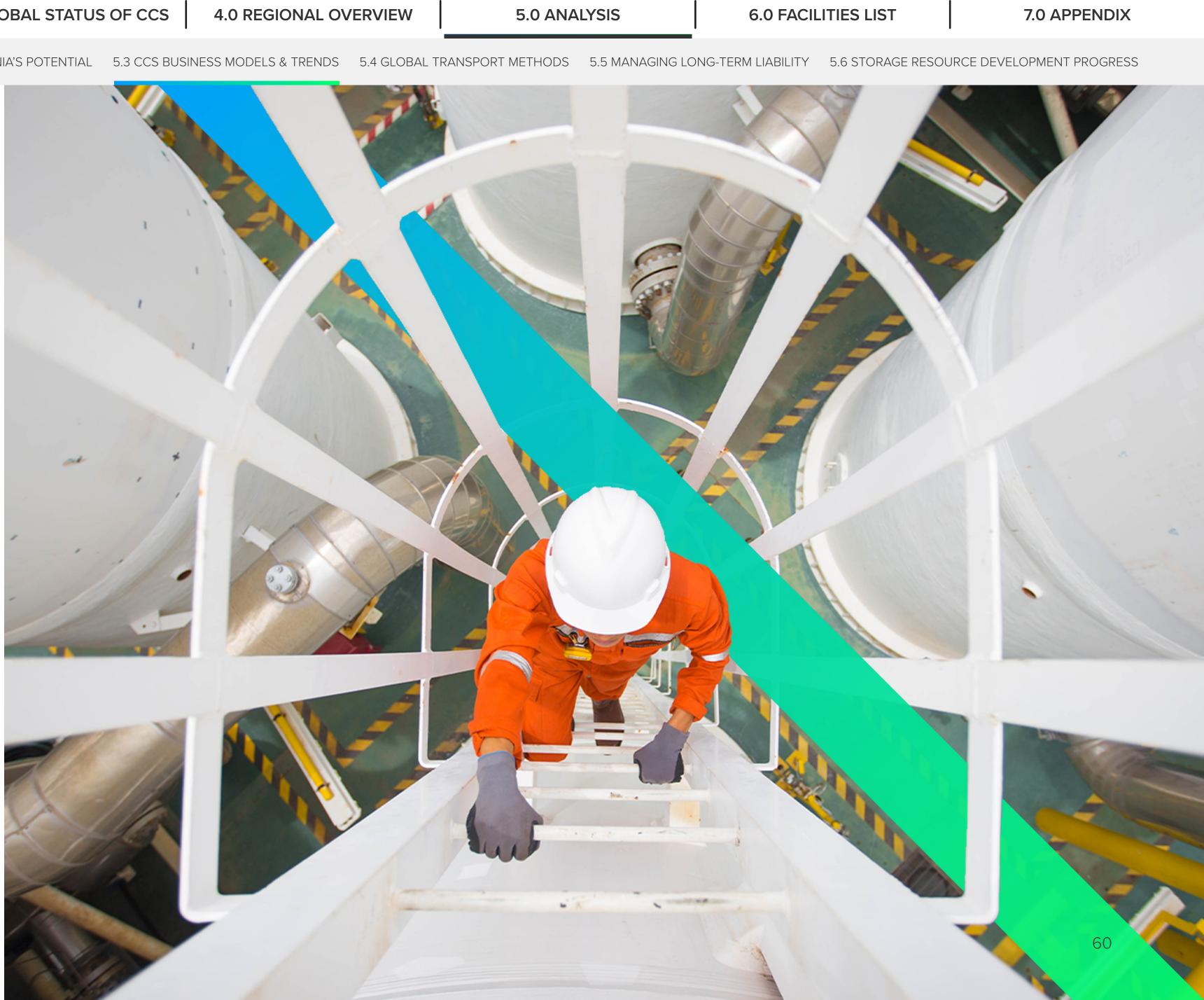
Potential price for clean ammonia

*Based on auto-thermal reforming (ATR) technology

- 1 Assuming a natural gas price of \$2.70/MMBtu (Henry Hub)
- 2 Includes maintenance, insurance, general and administrative and other expenses
- 3 CO_2 compression cost of \$9.80 per tonne CO_2 (opex only)
- 4 CO₂ transport and storage fee of \$20 per tonne CO₂
- 5 Based on LNG shipping rate of \$150,000 per day and 12-day trip as a proxy

3.0 GLOBAL STATUS OF CCS

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL


5.3 CCS BUSINESS MODELS AND TRENDS

Business models for CCS projects vary depending on industry specifics, local policies and prevailing market conditions.

Full value chain model

The traditional 'full value chain' model includes capture, transport and storage, typically developed by a consortium of industry players specialising in the various elements of the value chain. This model comes with cross-chain risks that could be a challenge for financiers of large-scale projects, for example if one component of the value chain fails or is unavailable then the whole value chain ceases operation.

This model also presents unique regulatory issues that could prolong project approval timelines such as environmental assessments that cover the full value chain as opposed to a single component, or where the whole project may not be able to proceed due to an environmental or social challenge applicable to only one component of the value chain.

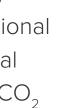
5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

Networks and hubs model

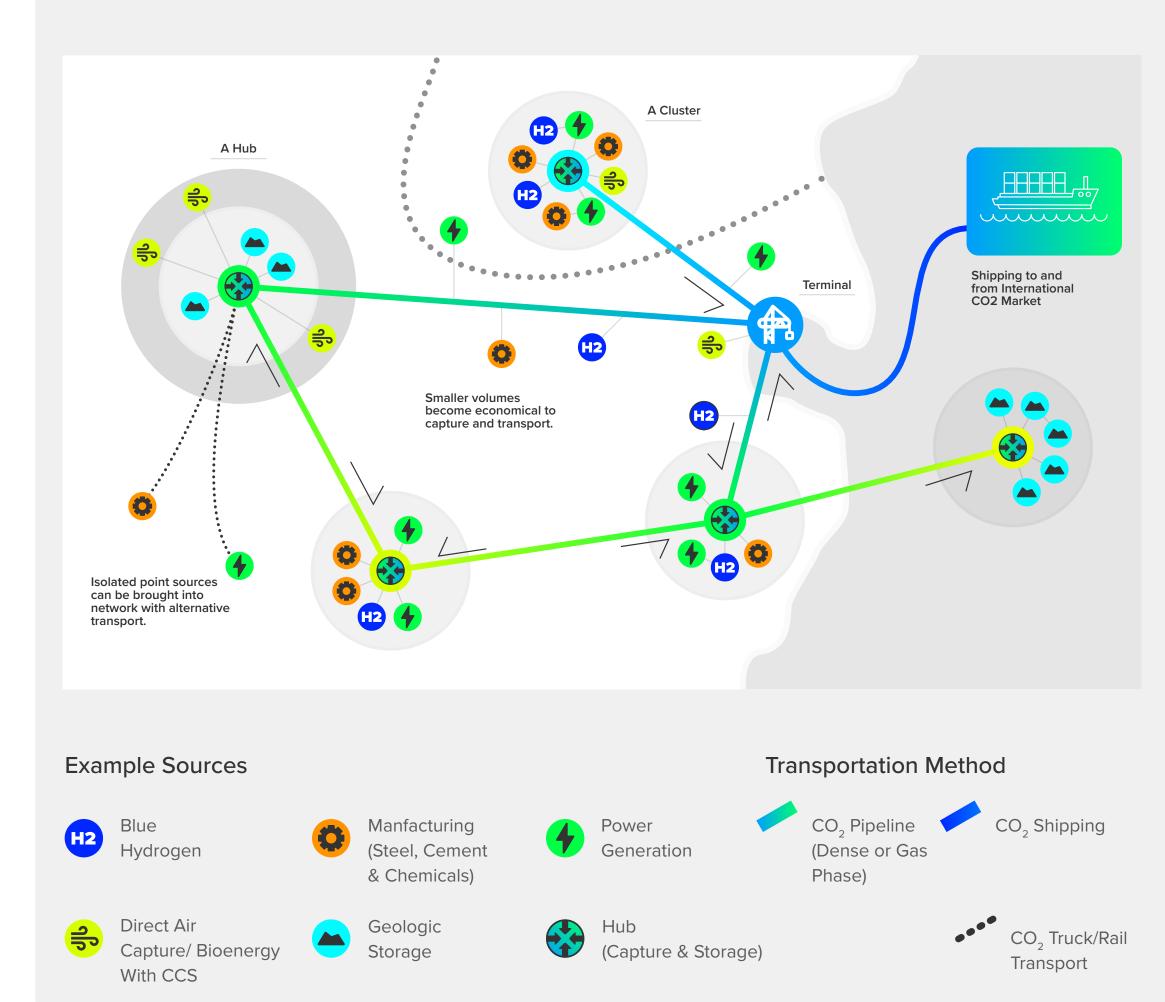
As demand for CCS increases, alternative business models are emerging that have the potential to accelerate deployment, reduce costs and remove supply chain risks. In recent years, CCS network and hub models have emerged in various global jurisdictions.

A typical network/hub model involves the establishment of an industrial 'cluster' where one company (or multiple companies in joint venture) invest in the development of CO₂ transport and/or storage infrastructure. This may include pipelines, compressors, port facilities, ships, injection wells or any combination of these facilities. This infrastructure is then available to local businesses that require a CO_2 management solution for a fee.

Networks, where each entity typically operates only part of the full CCS value chain, provide several benefits. They reduce cost and commercial risk by allowing each company to remain focused on their core business and not extend into areas of operations in which they have no competency. They create multiple service providers or customers, greatly reducing counterparty risk. They create economies of scale that would not be available to any individual CCS project, reducing cost.


CCS networks generally consist of pipelines between capture facilities and hubs with shared compression facilities that feed dense phase (high pressure; typically, 100-150 bar) pipelines to the injection wells. Suppliers must ensure CO₂ meets certain specifications before entering the network. As more projects come online, establishing CCS networks and hubs is becoming a default business model in linking captured CO_2 with storage sites.

CCS hubs are typically established in industrial areas where a number of large emitters are located and, as such, will not only serve to accelerate emissions reduction in hard-to-abate industries, but also contribute significantly to domestic regional economies. CCS hubs will likely attract additional carbon emissions-intense industries seeking a CO_2 management solution.

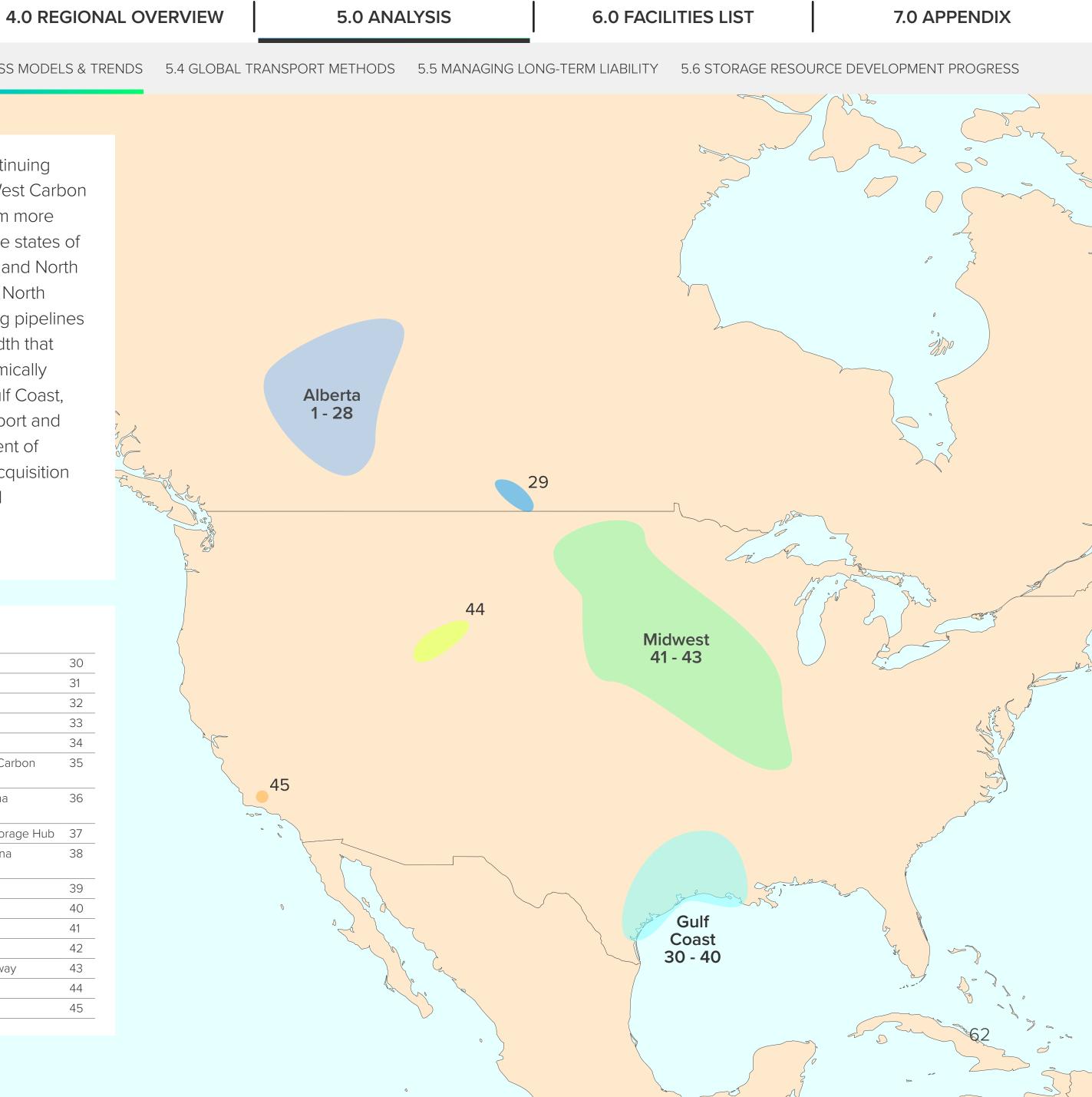


3.0 GLOBAL STATUS OF CCS

5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY

CCS networks have operated in the United States for decades, where most CO_2 has been geologically stored in the process of enhanced oil recovery. Investment in these early CCS networks, involving several thousand kilometers of CO₂ pipelines, was enabled by the revenues generated by additional oil production. Now, climate mitigation is the primary driver of CCS network development. Currently 25% of captured CO_2 is injected for dedicated storage. However going forward, 78% of the total capacity of CCS facilities in development or in construction will use dedicated geological storage (15% of facilities by capacity have not yet announced if they will use dedicated geological storage or enhanced oil recovery). At present, there are more than 100 CCS networks in development. A few examples are described below.

In the US, Summit Carbon Solutions is continuing to progress the development of the Mid West Carbon Express. The network will receive CO_2 from more than 30 ethanol refineries spanning the five states of Iowa, Nebraska, South Dakota, Minnesota and North Dakota for permanent geologic storage in North Dakota. The shared infrastructure, including pipelines and storage wells, demonstrates the breadth that networks can extend to in order to economically service many small CO₂ sources. In the Gulf Coast, ExxonMobil continues to develop its transport and storage business with ongoing development of the 100 Mtpa Houston CCS hub and the acquisition of Denbury and its extensive transport and storage infrastructure.


Figure 5.3–1: Projects in each network

Alberta Carbon Trunk Line (ACTL)	1
Pathways Alliance Oil Sands Pathways CCS Network	2
ARC Resources Greenview Region	3
Bison Meadowbrook Storage Hub	4
Bison North Drumheller Hub	5
City of Medicine Hat Project Clear Horizon	6
Enhance Grand Prairie Hub	7
Entropy Bow River Hub	8
Grand Prairie Net Zero Gateway Storage Hub	9
Heartland Generation Battle River Carbon Hub	10
IPL Alberta Hub	11
Kiwetinohk Maskwa Swan Hills Hub	12
Kiwetinohk Opal Carbon Hub	13
Oil Sands Pathway to Net Zero Alliance	14
Open Access Wabamun Carbon Hub	15

Origins Project Carbon Storage Hub	16
Pembina Alberta Carbon Grid	17
RETI East Calgary Region Carbon Sequestration Hub	18
Shell Atlas Carbon Storage Hub	19
Tidewater Brazeau Carbon Sequestration Hub	20
Tidewater Ram River Carbon Sequestration Hub	21
Tourmaline Clearwater	22
Vault 44.01 Rocky Mountain Carbon Vault	23
Vault 44.01 Athabasca Banks Carbon Hub	24
West Lake Pincher Creek Carbon Sequestration Hub	25
Whitecap Resources Rolling Hills Hub	26
Wolf Central Alberta Hub	27
Wolf Fort Saskatchewan Carbon Hub	28
Southeast Saskatchewan CCUS Hub	29


Talos Coastal Bend
Bluebonnet
Denbury Gulf Coast
Houston Ship Channel
Chevron Bayou Bend
Central Louisiana Regional Carbon Storage Hub (CENLA)
Talos Harvest Bend Louisiana Transport and Storage
Gulf Coast Sequestration Storage Hub
Crescent Midstream Louisiana Offshore Hub
Liberty CCUS hub
1PointFive Bluebonnet Hub
Mid West Express
Mt. Simon CCS Hub
Navigator Heartland Greenway
Denbury Rocky Mountains
Carbon Terravault 1

3.0 GLOBAL STATUS OF CCS

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

7.0 APPENDIX

Figure 5.3–2: Projects in each network

Saudi Aramco Jubail Hub	46
SNOC Sharjah Hub	47
Bumi Armada Bluestreak CO ₂	48
East Coast Cluster	49
HyNet	50
Medway Hub	51
Scottish Cluster	52
South Wales Industrial Cluster	53
Viking CCS	54
Antwerp@C	55
Aramis Hub	56
Axe Seine/Normandy CCS Cluster	57
Bremen Carbon Dioxide Transshipment Hub	58
CapeOmega NoordKaap	59
Carbon Connect Delta	60
CO ₂ nnectNow Hub	61
Dartagnan	62
Delta Corridor Pipeline Network	63
Equinor North Sea Pipeline Zeebrugge	64
EU2NSEA	65
Fluxys Ghent Carbon Hub	66
Neptune Energy L10	67
Porthos	68
PYCASSO Storage Hub	69
Smart Delta Resources CarbonConnectDelta	70
Barents Blue	71
Aker BP Poseidon	72
Equinor Smeaheia	73
Horisont Energi Errai	74
Wintershall Dea Havstjerne	75
Wintershall Dea Luna	76
Neptune Trudvang Storage Project	77
Langskip	78
C4 Copenhagen	79
DUC Bifrost	80
Fidelis Norne Carbon Storage Hub	81
Greenport Scandinavia	82
Project Greensand	83
Carbon Network South Sweden	84
Cinfracap	85
CODA	86
Energean Prinos	87
ENI Ravenna CCS Hub	88
Höegh LNG Stella Maris	89*

* Offshore floating injection platform; location not yet defined

In Europe, there is increased growth in crossborder CO₂ networks involving transport by ship as well as pipelines. The flagship Northern Lights project in Norway signed the first cross-border commercial agreement to store 0.8 Mtpa from the Yara Sluiskil ammonia and fertiliser plant in the Netherlands in August 2022. In May 2023 the Northern Lights project expanded its cross-border transport signing an agreement with Ørsted to store 0.4 Mtpa of biogenic CO₂ from two biomass power plants in Denmark. Project Greensand in Denmark successfully commenced the pilot stage of the transport and storage project with the world's first cross-border offshore injection of CO_2 .

While historically the North Sea has received attention in Europe, projects are now appearing in the Baltic and Mediterranean seas. The EU CCS Interconnector Project in northern Poland aims to take CO₂ from sources in northern Poland for ship-based transport in the North Sea. Starting at an initial capacity of 2.7 Mtpa before 2030, this network has plans to expand to 8.7 Mtpa beyond 2030.

The CCS Baltic Consortium is considering a similar approach, exporting CO_2 by ship from the port of Klaipeda, Lithuania. Similar transport-based projects are being developed in the Mediterranean Sea, with examples like the Ravenna Project by ENI that intends to bring CO₂ from sources across Europe for storage off the coast of Ravenna, Italy with a target of 4 Mtpa by 2027 through phased

5.1 VALUE OF CCS IN A NET-ZERO WORLD

5.2 INVESTORS TAKING NOTE CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS

infrastructure development. These developments in Europe are providing the framework for what could be a truly cross-regional network.

In the UK, several new networks have been announced and development of existing networks continues. The Medway CCS Project being developed focuses on ship-based transport of CO₂ from multiple power stations east of London to offshore storage in the Camelot depleted gas fields in the North Sea. In the northwest, Peel has commenced planning and design of the Protos network, focused on creating a carbon capture-ready industrial destination for existing and new businesses wanting to achieve net zero. The first phase will focus on aggregating emissions from power generation at 0.8 Mtpa CO₂ for transport to the regional Hynet infrastructure with future phases expanding to other industries, both existing and new, increasing capacity to over 1.2 Mtpa. The Protos network will also explore the future potential of bringing liquified CO₂, including

by shipping canal and rail, from other operations in the northwest and neighbouring regions not able to connect to the planned regional networks.

The Asia Pacific region is seeing the first elements of CCS networks being developed. The largest of these is the new Arun project looking to develop the depleted Arun gas field in the Indonesian province of Aceh, which will offer open access storage of CO₂ from sources in Indonesia and the Asia-Pacific region. The depleted Arun gas field has the potential to sequester in excess of 1,000 Mt of CO_2 , which could make it one of the largest projects globally.

In Australia, there are several CCS networks in development ranging from CO₂ pipeline and storage projects in the state of Victoria by CarbonNet and ExxonMobil to a major low-emissions industrial CCS hub in Darwin with storage in the deep saline formations off Australia and depleted fields in Timor-Leste.

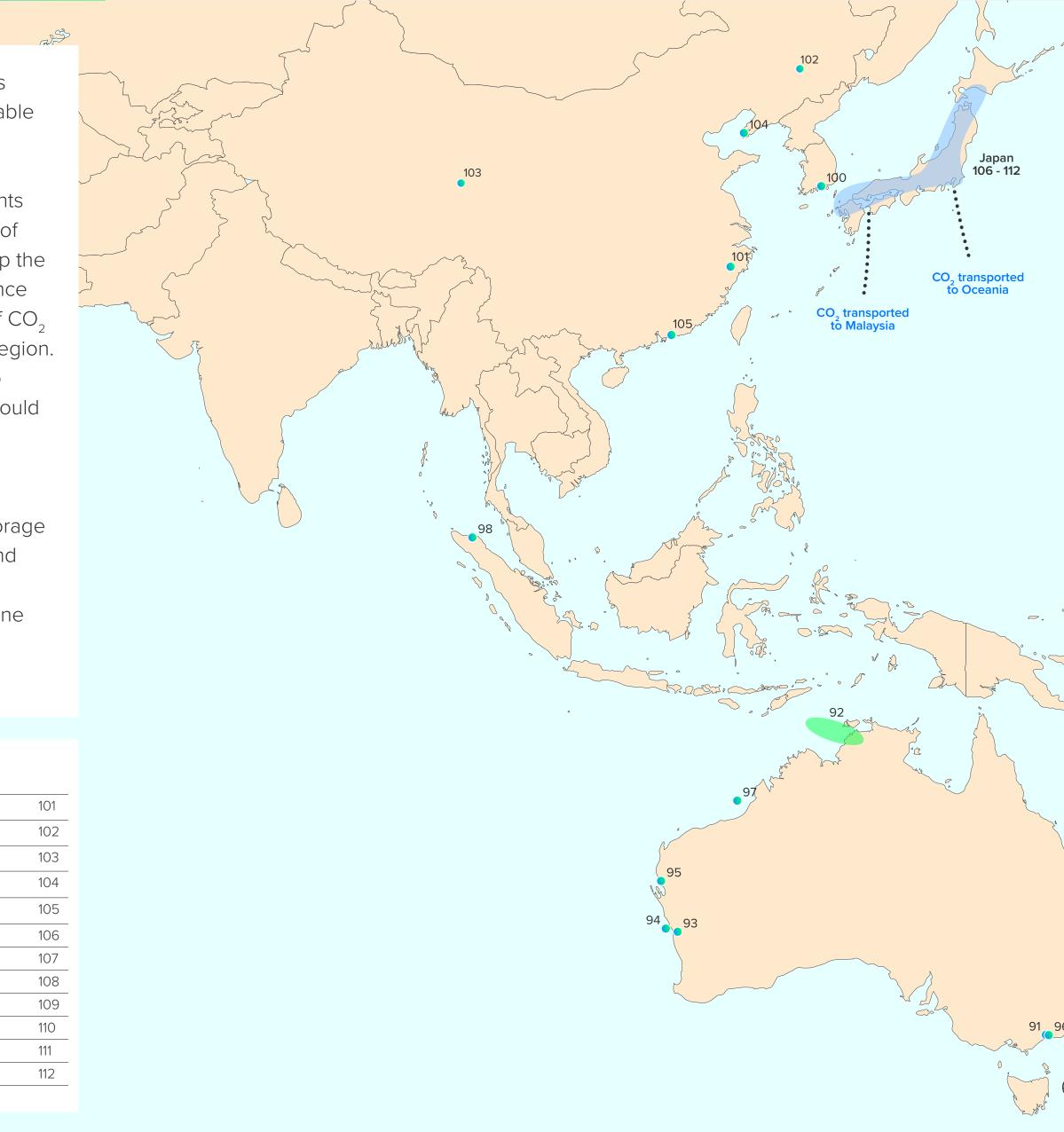
Figure 5.3–3: Projects in each network

	deepC Store CStov re1	90
•	ExxonMobil South East Australia Carbon Capture Hub	91
	Middle Arm Sustainable Development Precinct	92
	Mitsui Mid West Modern Energy Hub	93
	Pilot Mid West Clean Energy	94
	Santos Reindeer Hub	95
	Victorian Government CarbonNet	96
	Woodside Burrup Hub	97
	Carbone Aceh Arun Hub	98
	ExxonMobil Indonesia Regional Storage Hub	99
	Shepherd CCS	100

Yangtze River Delta Hub
Songliao Basin
Junggar Basin Hub
Hengli Dalian Changxing Island CCUS
Daya Bay CCS Hub
East Niigata Area
Kyushu
Metropolitan Area
Oceania
Offshore Malay
Tohoku Region West Coast
Tomakomai Area

4.0 REGIONAL OVERVIEW

5.0 ANALYSIS


6.0 FACILITIES LIST

7.0 APPENDIX

5.4 GLOBAL TRANSPORT METHODS

5.5 MANAGING LONG-TERM LIABIL

5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

3.0 GLOBAL STATUS OF CCS

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS

Capture-as-a-service model

Another emerging business model is the deployment of capture technology as a service. Capture as a service can consist of a technology provider designing, building and operating a carbon capture plant on behalf of an emitter all the way up to the full CCS value chain. Aker Carbon Capture is one technology provider actively offering this service and it is likely that other technology providers will adopt this business model in the future.

Transport and storage-as-a-service model

Transport and storage projects are taking several different approaches to scaling up and development.

Projects such as the Midwest Carbon Express are actively working with emitters during the development of the CCS value chain and sizing all infrastructure accordingly.

The acquisition of Denbury by ExxonMobil is a significant indicator of maturation of the CO₂ transport and storage business model. The acquisition of Denbury and its assets delivers ExxonMobil an opportunity to build a CO₂ transport and storage business with the potential to store 100Mtpa from emission sources in the US Gulf coast. This infrastructure includes approximately 2000km of CO₂ pipelines and 10 onshore CO₂ geological storage sites.

The acquisition of Denbury by ExxonMobil is a significant indicator of maturation of the CO₂ transport and storage business model.

Other networks, such as the Northern Lights, EU CCS Interconnector, Ravenna projects and Project Greensand, focus on staged development. Typically, one or more anchor emitters, typically with low capture costs, enable the development of the infrastructure (transport and storage) in early phases followed by subsequent phases scaling up to accommodate new, and often higher capture cost, emitters. As an example Project Greensand, aims to establish a value chain to transport and store CO₂ (ultimately from various European countries) offshore in Denmark in a staged manner from 2025 to 2030 increasing from 1.5 Mtpa to potentially 8 Mtpa following the successful pilot stage of the project.

Other projects, such as the Arun project, adopt a "build and they will come" approach, where infrastructure for transport and storage is designed and built irrespective of the CO_2 source.

While there are several different transport and storage approaches being taken, they all offer the opportunity to scale up to meet the growing demand for permanent storage of CO_2 .

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

5.4 **GLOBAL TRANSPORT** METHODS

Carbon dioxide can be transported by pipeline, rail, truck or ship. Each mode of transportation has different operational requirements and capacities that impact suitability for a given project (Figure 5.4–1).

Transportation of CO₂ by pipeline is mature and the preferred method with 41 projects in construction or operation using this method of transportation; 195 of the 325 CCS projects in development also plan to transport CO_2 by pipeline. However, transportation of CO_2 by ship or a combination of transport methods (for example pipeline and shipping) is seeing increased interest, with 11 shipping projects in development and 28 projects with a combination of transport modes in development and a further 3 in construction.

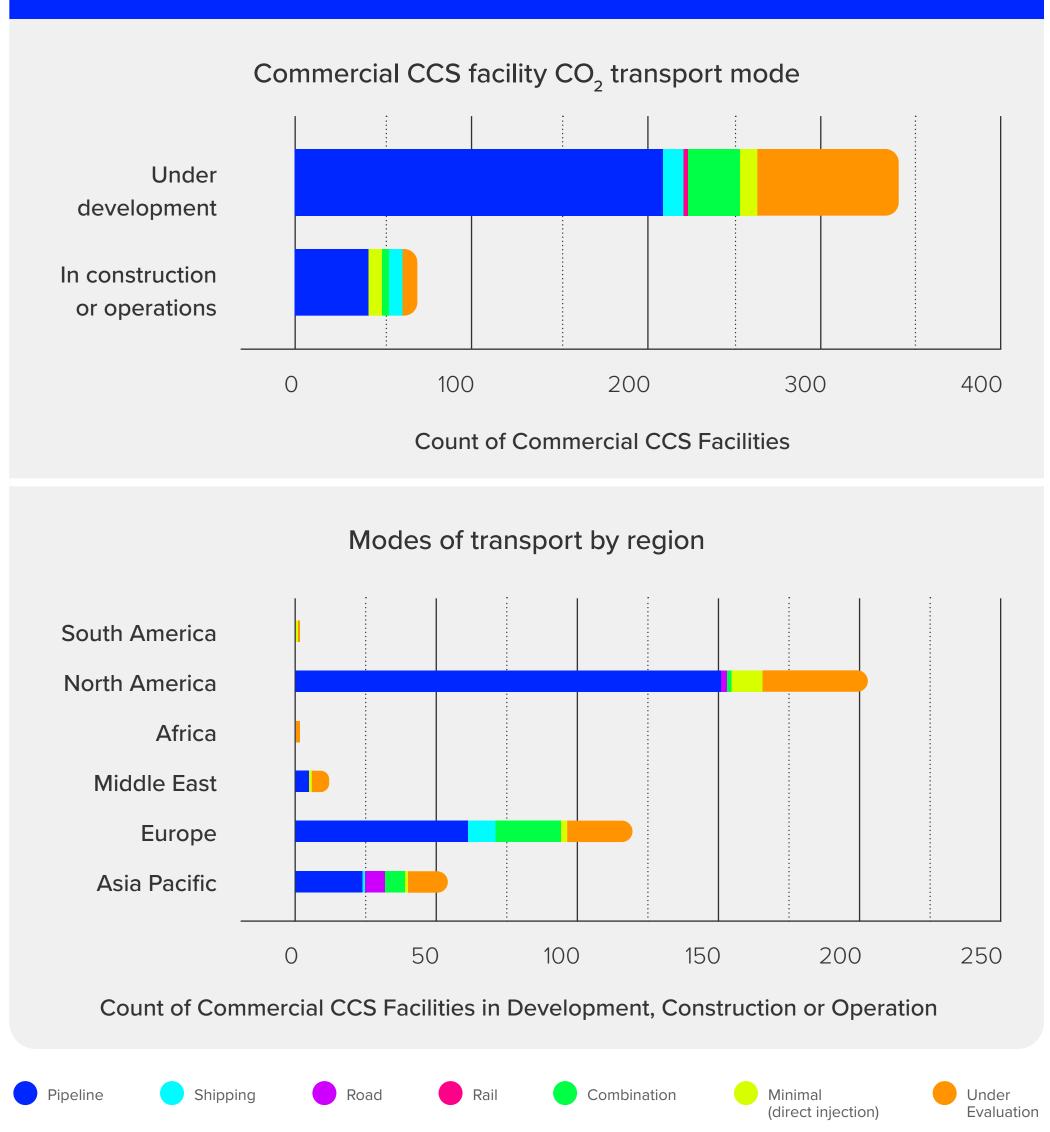
Shipping has seen an increase in uptake as a transport method as it offers a more flexible alternative to pipelines for offshore storage and during the overseas movement of CO₂, especially where there is variability in sources, demand and storage sites.

Transport meth Pipeline Ship Truck Rail

Figure 5.4–1: Comparison of CO₂ transportation methods.

hod	Conditions	CO ₂ phase	Current capacity ¹	Remarks
	48-200 barg², 10 to 34°C	to 34°C Vapour or dense phase	~110 MtCO ₂ /yr; ~ 9500km of pipeline transport in operation	 Higher capital costs, lower operating costs compared to the other methods.
				 Low-pressure pipeline transport is generally more expensive than dense phase transport per tonne of CO₂.
				• Over 50 years of commercial experience.
	7-45 barg, -52 to 10°C.	Liquid	>3 MtCO ₂ /yr	 Higher operating costs, lower capital costs compared to pipeline transport.
				 Currently applied in food and brewery industry for smaller quantities.
				Offers volume and route flexibility.
	17-20 barg, -30 to -20°C	Liquid	>1 MtCO ₂ /yr	• 2-30 tonnes per batch.
				 Not economical for large-scale CCS projects.
				• Boil-off gas emits 10% of the load.
	7-26 barg, -50 to -20°C	Liquid	>1 MtCO ₂ /yr	 No large-scale systems in place.
				 Loading/unloading and storage infrastructure required.
				• Only feasible with existing rail line.
				 More advantageous over medium and long distances.

1 Incudes CO₂ that is permanently stored and for further use in fertiliser production, food and beverage, enhanced oil recovery and other uses. 2 barg is gauge pressure, in bar, relative to atmospheric pressure. 1 bar is approximately equal to atmospheric pressure at sea level.


1.0 FROM THE CEO

2.0 SCALING UP THROUGH 2030

3.0 GLOBAL STATUS OF CCS

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

Figure 5.4–2: Transport modes

5.0 ANALYSIS

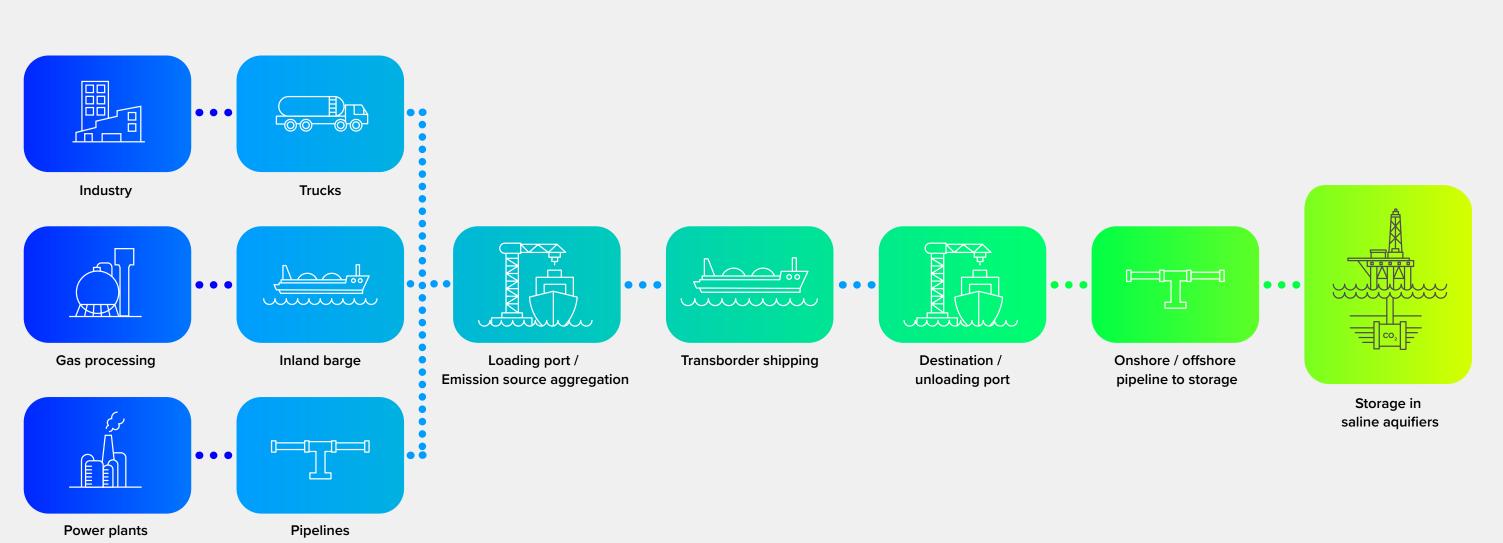
Shipping offers some significant advantages over pipeline transport of CO_2 in certain circumstances.

- Shipping enables the scale of a project to be rapidly increased if the market demands. Whilst additional or larger ships can be added to increasing CO_2 supply, the capacity of a pipeline needs to be defined from the initiation of the project. This presents an issue of overengineering a pipeline anticipating greater demand or limiting the demand to pipeline design.
- Shipping enables a single ship, or shuttle shipping, to load from multiple CO₂ sources and offload to a single storage site. From a storage perspective, this increases the economics of multi-user offtake agreements. From a capture perspective, this enables various sized capture facilities, most likely industrial sources clustered in the same region, to access transport and storage at a lower cost.
- Shipping routes can be changed and new storage sites utilised if the original storage site becomes unusable. For example, if a storage site is unavailable due to planned or unplanned maintenance or operational difficulties, the ship can transport the CO_2 to an alternate storage site.
- On the closure of a CCS facility, a ship can be re-routed, sold or reused, whereas a pipeline needs to be decommissioned at a cost.

Regionally the optimum mode of transport is heavily dependent on the relative location of suitable storage resources and emission sources. In the United States, pipeline transport remains the most common mode of transport with over 50 years of commercial experience and well over 8000 km of CO_2 pipelines.

In Europe, projects considering pipeline, shipping or a combination of the two are increasing in number linking regional emissions sources to suitable storage. Several new networks such as the EU CCS Interconnector Project in northern Poland and the CCS Baltic Consortium in Lithuania are considering all modes of transport to bring CO₂ from emissions sources in each country to a suitable location.

Emission sources are expected to use all modes of transport spanning pipeline, truck, rail and inland barges to transport CO_2 to export terminals where it will be loaded onto ships. Ships will then transport the CO₂ either to the storage location or to other ports from which the final transport stage will be by pipeline (Figure 5.4–3 on the next page).



5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

In China, transport by truck has been proven at the 1 Mtpa scale. As an example, the Sinopec Qilu Petrochemical CCS Project in the eastern Shandong province commenced capturing and storing 1 Mtpa is using trucking as the transport method in August 2022 prior to a pipeline being built. The pipeline has now been built and is operational as of July 2023. Whilst a more costly approach for a CCS project overall, it has enabled the project to quickly bring online capture and storage technology for evaluation before moving to pipeline transport for ongoing permanent operation.

As projects grow it is likely that all transport methods will be required to bring together CO₂ from emissions sources of all scales to suitable storage, be it through traditional vertical projects or largescale regional networks.

Figure 5.4–3: Complex CO₂ transport system considering all transport modes

5.0 ANALYSIS

6.0 FACILITIES LIST

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

5.0 ANALYSIS

7.0 APPENDIX

Transport safety

Recently, new CO_2 pipeline developments have been challenged due to concerns for public safety. Carbon dioxide is much safer to transport than many other substances because it does not form flammable or explosive mixtures with air. Further, CO_2 is not directly toxic to humans or wildlife when released to the atmosphere, except in the highly unlikely event that the release is catastrophic (very rapid and in extremely high quantities).

The safety record of CO₂ pipelines demonstrates that they can be operated with high standards of safety. Over the years, there have been only a few incidents, with the majority being minor releases of CO₂. As an example for the United State, the total amount of CO₂ released from these incidents averages less than 0.01% of the overall amount transported annually. However, a significant incident occurred at the Delhi Pipeline near Satartia, Mississippi in February 2020 due to a rupture caused by a landslide. While no fatalities occurred, residents were evacuated and some required medical attention.

In response to this incident, the Pipeline and Hazardous Materials Safety Administration (PHMSA) issued penalties and proposed updates to CO₂ pipeline standards. These steps are supported by industry groups and aim to strengthen safety measures. Despite occasional incidents, PHMSA's safety data show that CO₂ pipelines in the US can be operated safely using best practices.

5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS

Technology advancements

Technology developments in CO₂ transport have been predominantly in shipping with technology advancing rapidly. Mitsubishi Shipbuilding Company launched a 1,450 m³ liquid CO₂ ship demonstrator in March 2023 to take part in demonstration trials shipping CO₂ to the Tomakomai CCS project in Japan. Other projects in development, such as Northern Lights in Norway, are scaling up with Dalian Shipbuilding Industry Co. Ltd contracted to build two medium pressure 7,500 m³ vessels.

Other ship designs with capacities of up to 22,000 m³ have been approved in principle such as for Dan-Unity CO₂ and TGE Marine. Larger designs have been conceived and designed by several ship manufacturers with details given in Table 2. Northern Lights expects delivery of their two medium pressure vessels in 2024, with other manufacturers indicating expected delivery of First in Class ships from 2025.

Figure 5.4–4: Announced liquid CO_2 ship designs and key characteristics

LCO, ship manufacturer (M) or CCS project (P)

Daewoo Shipbuilding & Marine Engineering (M)

Dalian Shipbuilding Industry Co. Lt Northern Lights (P)

Ecolog (M)

Frisian Shipyard (M)

Hyundai Heavy Industries and Hyundai Glovis Co. (M)

Hyundai Heavy Industries (M)

Larvik Shipping AS (M)

Mitsubishi Shipbuilding (M) Tomakomai Demonstration Project on CO_{2} Transportation (P)

Mitsui O.S.K. Lines and Mitsubishi Heavy Industries (M)

Stella Maris CCS (P)

Stena Bulk (M)

TGE Marine (M)

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

	Volume	Dimensions	Transportation conditions	Ship fuel
	70,000 m ³	260 m x 44 m	Not reported	LNG
	40,000 m ³	Not reported	Not reported	Not reported
Ltd (M)	7,500 m ³	130 m length	14 barg, -28°C Medium P	LNG
	20,000 m ³	167 m x 28 m	8 barg, -55°C Low P	Not reported
	84,000 m ³	275 m x 48 m	8 barg, -55°C Low P	Not reported
	1,670 m ³ (1382 t)	79 m x 14 m	18 barg, between -22.5 and -40°C Medium P	Not reported
	74,000 m ³	284 m x 42 m	High pressure, low temperature High P	LNG
	40,000 m ³	239 m x 30 m	Not reported (IMO Type C cargo tanks)	LNG
	1,500 m ³ (1240 t)	80 m x 14 m	14 - 19 barg, -30°C Medium P	Not reported
	2,100 m ³ (1770 t)	83 m x 13 m	14 - 19 barg, -30°C Medium P	Not reported
ct	1,450 m ³	72 m x 13 m	Not reported	Not reported
i	50,000 m³	Not reported	Not reported	Not reported
	50,000 m ³	238 m x 38 m	6.5 barg, -47°C Low P	LNG / Bio gas / NH ₃
	8,000 m ³	130 m x 21 m	14 barg, -25°C Medium P	Methanol dual fuel
	10,940 m ³	162 m x 21 m	14 barg, -25°C Medium P	Methanol dual fuel
	12,500 m ³	Not reported	Not reported	Not reported
	22,000 m ³	Not reported	Not reported	Not reported

3.0 GLOBAL STATUS OF CCS 2.0 SCALING UP THROUGH 2030 4.0 REGIONAL OVERVIEW 1.0 FROM THE CEO 6.0 FACILITIES LIST **5.0 ANALYSIS** 7.0 APPENDIX 5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS 5.5 MANAGING LONG-TERM LIABILITY Liability for CCS operations continues to be raised by many parties as a critical issue for the deployment of CCS projects globally. While regulators and policymakers in several jurisdictions around the world have enacted regulatory frameworks that explicitly address the topic in some instances over 15 years ago – the rapid pace of project deployment and absence of legislation in others has led to renewed focus and further intervention. For some proponents the issue remains a critical consideration for investment in nascent projects, and several have cited the need for clarity as to the parameters for the long-term management of potential liabilities. Policymakers and regulators have been similarly challenged by the need to manage risks throughout the CCS project lifecycle. In addition to ensuring there is a practical model for addressing or remediating any harm caused by CCS activities, liability regimes may also ultimately play a significant role in reinforcing public confidence in the technology.

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS

Defining what is meant by liability

Notwithstanding the strong interest in the topic, it is essential to ensure there is clarity when considering liability associated with CCS operations. A level of precision is required in defining the various forms of liability that are to be borne by all parties throughout the lifetime of a storage project. Clarity is essential for ensuring proponents are able to assess the magnitude of their exposure, as well as affording policymakers and regulators a means of offering targeted and practical approaches to delivering solutions.

The Institute has undertaken significant work in this space and previously noted the potentially broad range of liabilities that will be applicable throughout the CCS project lifecycle. A review of the various CCS-specific legal regimes developed to date reveals three largely distinct forms of liability.

The first, civil liability, refers to those liabilities that may occur where damage is caused by CCS operations to the interests of a third-party and compensation for that damage is sought. Termed 'tortious liability' in common law jurisdictions, these liabilities have been determined in legislation, or through principles developed under decisions of the courts.

A second category, administrative liability, stems from an authority's statutory powers, which may compel an operator to undertake a specified action. In the case of CCS operations, these liabilities may be borne by an operator under a CCS-specific license or permit, or under wider energy-related and environmental protection legislation.

The third category, greenhouse emissions/climate change liability, occurs where an operator is obliged to account for any subsequent leakage of CO_2 , in instances where a credit has been previously awarded for permanent geological storage.

The impact of these individual forms of liability upon operators, however, will likely vary considerably when considered individually. As such, their allocation and management will require careful consideration by policymakers and regulators.

Several jurisdictions globally have now developed comprehensive CCS-specific regimes, which include provisions aimed at managing the liabilities associated with the geological storage of CO₂ throughout the entirety of the project lifecycle.

5.0 ANALYSIS

National approaches to managing liability

Several jurisdictions globally have now developed

include provisions aimed at managing the liabilities

While many of these early regimes front-load their

regulatory requirements, to reduce the risks of CCS

operations, they also include provisions that formally

channel liabilities to an operator in instances where

storage may be compromised. Policymakers and

regulators have created these operational models

through the introduction of new provisions, as well

as amendments to existing regimes.

comprehensive CCS-specific regimes, which

associated with the geological storage of CO_2

throughout the entirety of the project lifecycle.

5.5 MANAGING LONG-TERM LIABILITY

In the EU, for example, the Storage Directive requires an operator to take preventative and remedial action in accordance with the Environmental Liability Directive. In other jurisdictions the current position is less clear, with regulators yet to address the topic in national frameworks. The absence of a clear approach consequently exposes industry, investors and the public to uncertainties around the management of these liabilities.

In the United States, where the federal regulator has a limited legal responsibility for addressing long-term liability, several states are now developing regimes for the management of liability following the cessation of injection activities. Some states have proposed models that afford extensive post-closure relief to operators, a move that has been met with consternation from some parties and positivity from others.

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Critical considerations

Several early CCS-specific regimes offer the opportunity for operators to transfer liability for a storage site or stored CO_2 from the operator to a state's competent authority. Examples of this approach have been implemented in frameworks in Canada, Australia and under the European Union's CCS Directive.

Other policymakers and regulators are now also considering whether this approach should be adopted in their jurisdictions. While potentially an important factor in recognising the temporal challenges of liabilities and one that may encourage the wider deployment of a critical climate mitigation technology, it is important to ensure that the use of this mechanism does not abrogate an operator's wider responsibilities to risk management and the environment.

The approach to financial security, similarly, remains an important consideration for many governments when considering their management of liability. Successful examples demonstrate the importance of carefully balancing competing issues, to ensure that project deployment is not jeopardised. These examples model an approach where more financial/ operational risks are carried by the operator during the operational phase of the project, when such risks can be better managed than during deployment, and away from the public purse.

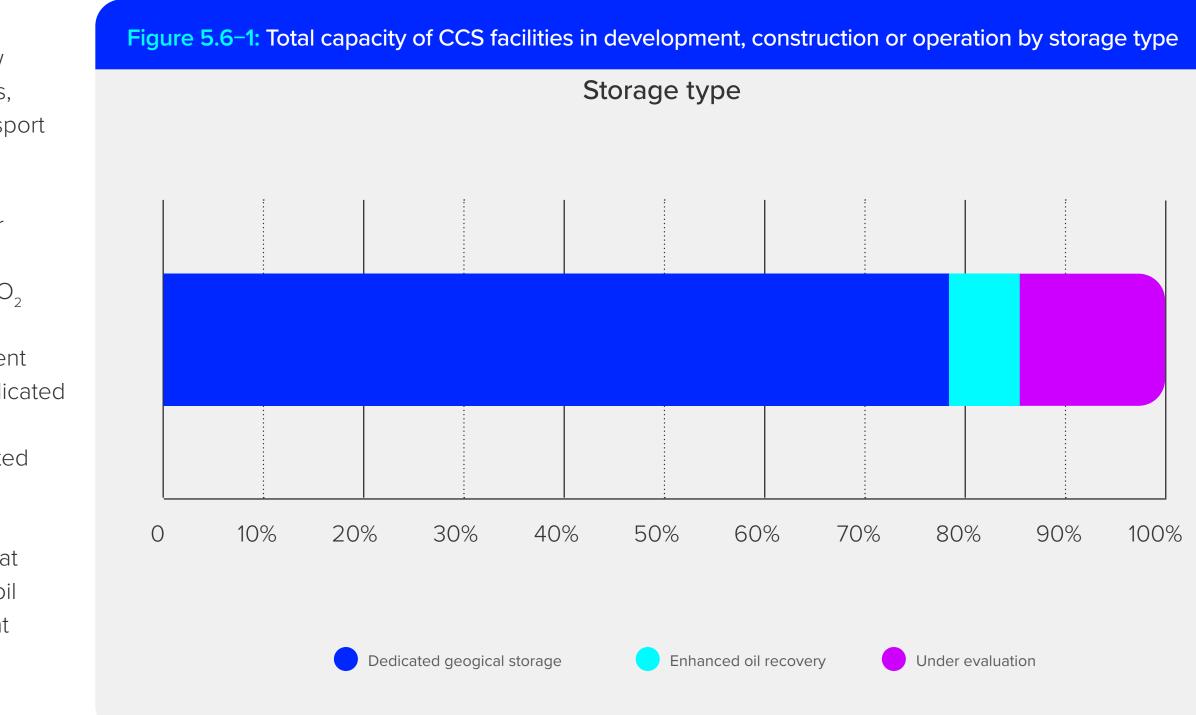
4.0 RE

5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODE

5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

Historically, CCS facilities were vertically integrated, capturing CO₂ from a single facility and transporting and storing that CO_2 as part of a single chain. The first such facility utilising a dedicated geological storage resource, Equinor's Sleipner, has operated in the North Sea, Norway, since 1996. Vertically integrated facilities develop enough storage resources to match the required capture rate over the lifetime of a project.

However, disaggregated CCS value chains are rapidly emerging as a common structure for CCS projects in development. As discussed in Section 5.3, operators are now developing facilities focused solely on CO₂ transport and storage without a dedicated, integrated capture source, such as Equinor's Northern Lights.


As of 31 July 2023, 101 CO₂ transport and storage facilities were operational or in the development pipeline. All but seven of these facilities were announced between 2020 and 2023. Almost all of these plan to connect into or establish CCS networks as they seek to receive CO₂ from multiple sources for transport and/or storage for a fee. More than 100 separate CCS networks are now in development. The rise of networks continues, now clearly driven by projects that plan to transport and/or store CO_2 for profit.

In addition to the rise of CCS networks, another clear trend is the development of dedicated geological storage resources as opposed to CO₂ storage through enhanced oil recovery; 78% of the total capacity of CCS facilities in development or in construction have stated they will use dedicated geological storage (15% of facilities by capacity have not yet announced if they will use dedicated geological storage or enhanced oil recovery).

This is significant for two reasons. The first is that it demonstrates that revenues from enhanced oil recovery are generally becoming less important to the commercial viability of CCS investments. The second is that developers of dedicated geological storage resources will seek to maximise their capacity to increase their economic value. This financial incentive is critical to drive increased rates of storage resource development.

Projections of how much CO₂ must be geologically stored to achieve net zero emissions vary Whilst the number of CCS projects and geological considerably depending upon the assumptions of storage resources being developed has grown the scenario or model. For example, the average total mass of CO₂ stored between 2020 and 2050, across rapidly in recent years, it is clear that storage the 90 scenarios considered in the IPCC Special resource development must accelerate to help achieve net-zero emissions by mid-century. Report on Global Warming of 1.5° Celsius exceeds 100 Gt (the annual CO₂ storage rate reaches 10 Gtpa

REGIONAL OVERVIEW	5.0 ANA	LYSIS	6.0 FACIL	ITIES LIST	7.0 APPEN

in 2050). In comparison, if all the CCS facilities in the CCS project pipeline commenced operations on time and operated at full capacity, they could theoretically store a total of 12 Gt of CO_2 between now and 2050. The gap between the geological storage capacity in development and the geological storage capacity required to meet climate targets is an order of magnitude.



5.1 VALUE OF CCS IN A NET-ZERO WORLD 5.2 INVESTORS TAKING NOTE OF CLEAN AMMONIA'S POTENTIAL 5.3 CCS BUSINESS MODELS & TRENDS 5.4 GLOBAL TRANSPORT METHODS 5.5 MANAGING LONG-TERM LIABILITY 5.6 STORAGE RESOURCE DEVELOPMENT PROGRESS

This simple analysis illustrates that the rate of geological storage resource development must accelerate rapidly to achieve net-zero targets.

It is important to note that total global geological storage capacity is not the limiting factor. The IPCC states that the world's total theoretical storage resource potential is conservatively estimated at 1,000 Gt of CO_2 – more than enough to meet the world's ambitious climate targets.

In order to ensure that storage resources are available for utilisation when required, more must be done to incentivise and bring forward investment in storage resource identification and appraisal. The development of sufficient geological storage resources to meet national net-zero emission targets should be a high priority for governments.

Like grid scale energy storage or transmission lines for renewable electricity, sufficient investment in this essential infrastructure to help meet net-zero commitments requires targeted polices and planning by governments.

5.0 ANALYSIS

6.0 FACILITIES LIST

7.0 APPENDIX

Figure 5.6–2: Comparison of total mass of CO₂ required to be stored by 2050 with the maximum theoretical potential of the current CCS project pipeline

GREATER THAN 100 GTCO.

Total cumulative mass of CO. required to be stored to meet climate targets by 2050

12 GTCO

Maximum theoretical potential of current CCS project pipeline

6.0 FACILITIES LIST

REGIONAL OVERVIEW	5.0 ANALYSIS	6.0 FACILITIES LIST	7.0 APPEN

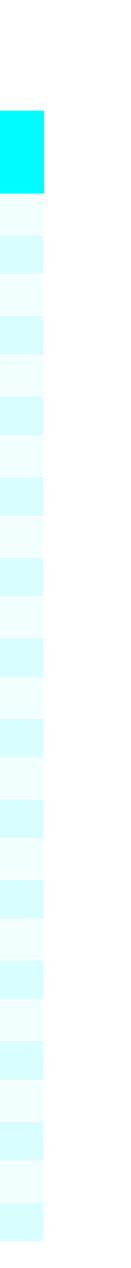
2023 FACILITIES LIST

Operational

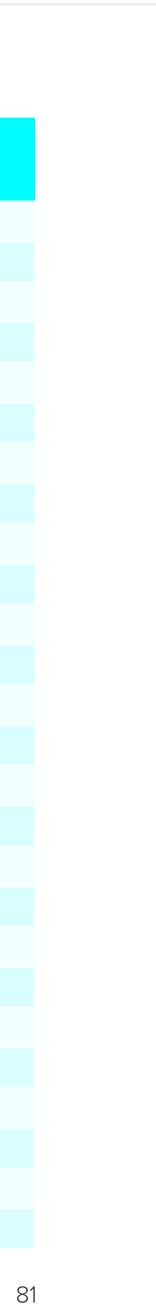
Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Occidental Terrell	USA	1972	Natural Gas Processing	0.5	Enhanced Oil Recovery
Enid Fertilizer	USA	1982	Hydrogen / Ammonia / Fertiliser	0.2	Enhanced Oil Recovery
ExxonMobil Shute Creek Gas	USA	1986	Natural Gas Processing	7	Enhanced Oil Recovery
MOL Szank Field	Hungary	1992	Natural Gas Processing	0.16	Enhanced Oil Recovery
Equinor Sleipner	Norway	1996	Natural Gas Processing	1	Dedicated Geological Storage
Great Plains Synfuels Plant and Weyburn-Midale	USA	2000	Hydrogen / Ammonia / Fertiliser	3	Enhanced Oil Recovery
Core Energy CO ₂ -EOR South Chester plant	USA	2003	Natural Gas Processing	0.35	Enhanced Oil Recovery
Equinor Snohvit	Norway	2008	Natural Gas Processing	0.7	Dedicated Geological Storage
Petrobras Santos Basin Pre-Salt Oil Field	Brazil	2008	Natural Gas Processing	10.6	Enhanced Oil Recovery
Arkalon CO ₂ Compression Facility	USA	2009	Ethanol	0.5	Enhanced Oil Recovery
Longfellow WTO Century Plant	USA	2010	Natural Gas Processing	5	Enhanced Oil Recovery
Gary Climate Solutions Bonanza BioEnergy	USA	2012	Ethanol	O.1	Enhanced Oil Recovery
Yanchang Integrated Demonstration	China	2012	Chemical	0.05	Enhanced Oil Recovery
Air Products and Chemicals Valero Port Arthur Refinery	USA	2013	Hydrogen / Ammonia / Fertiliser	0.9	Enhanced Oil Recovery
Contango Lost Cabin Gas Plant	USA	2013	Natural Gas Processing	0.9	Enhanced Oil Recovery
Coffeyville Gasification Plant	USA	2013	Hydrogen / Ammonia / Fertiliser	0.9	Enhanced Oil Recovery
PCS Nitrogen Geismar Plant	USA	2013	Hydrogen / Ammonia / Fertiliser	0.3	Enhanced Oil Recovery
SaskPower Boundary Dam	Canada	2014	Power Generation and Heat	1	Enhanced Oil Recovery
Saudi Aramco Uthmaniyah	Saudi Arabia	2015	Natural Gas Processing	0.8	Enhanced Oil Recovery
Shell Quest	Canada	2015	Hydrogen / Ammonia / Fertiliser	1.3	Dedicated Geological Storage

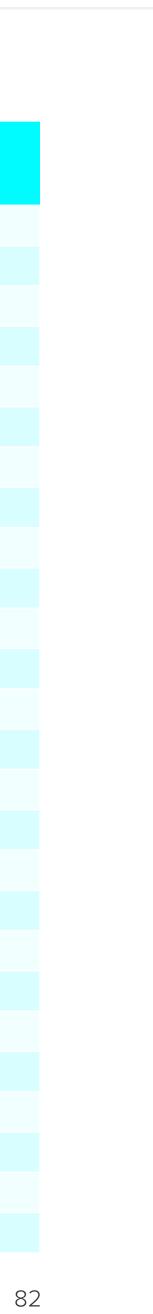
Operational

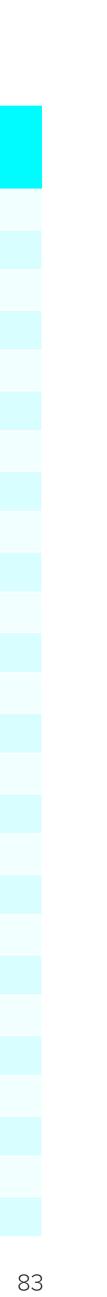
Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Xinjiang Dunhua Karamay	China	2015	Chemical	0.1	Enhanced Oil Recovery
ADNOC Al-Reyadah	United Arab Emirates	2016	Iron and Steel Production	0.8	Enhanced Oil Recovery
ADM Illinois Industrial	USA	2017	Ethanol	1	Dedicated Geological Storage
CNPC Jilin Oil Field	China	2018	Natural Gas Processing	0.6	Enhanced Oil Recovery
Chevron Gorgon	Australia	2019	Natural Gas Processing	4	Dedicated Geological Storage
Qatargas Qatar LNG	Qatar	2019	Natural Gas Processing	2.2	Dedicated Geological Storage
Enhance Clive Oil Field	Canada	2020	CO ₂ Transport / Storage	1.12	Enhanced Oil Recovery
NWR Sturgeon Refinery	Canada	2020	Oil Refining	1.6	Enhanced Oil Recovery
WCS Redwater	Canada	2020	Hydrogen / Ammonia / Fertiliser	0.3	Enhanced Oil Recovery
Wolf Alberta Carbon Trunk Line	Canada	2020	CO ₂ Transport / Storage	14.6	Enhanced Oil Recovery
China National Energy Guohua Jinjie	China	2021	Power Generation and Heat	0.15	Dedicated Geological Storage
Climeworks Orca	Iceland	2021	Direct Air Capture	0.004	Dedicated Geological Storage
Sinopec Nanjing Chemical	China	2021	Chemical	0.2	Enhanced Oil Recovery
Yangchang Yan'an CO ₂ -EOR	China	2021	Chemical	O.1	Enhanced Oil Recovery
Entropy Glacier Gas Plant	Canada	2022	Natural Gas Processing	0.2	Dedicated Geological Storage
Red Trail Energy Richardton Ethanol	USA	2022	Ethanol	0.18	Dedicated Geological Storage
Sinopec Qilu-Shengli	China	2022	Chemical	1	Enhanced Oil Recovery
Yangchang Yulin CO ₂ -EOR	China	2022	Chemical	0.3	Dedicated Geological Storage
China National Energy Taizhou	China	2023	Power Generation and Heat	0.5	Enhanced Oil Recovery
CNOOC Enping	China	2023	Natural Gas Processing	0.3	Dedicated Geological Storage
Sinopec Jinling Petrochemical (Nanjing Refinery)	China	2023	Oil Refining	0.3	Enhanced Oil Recovery



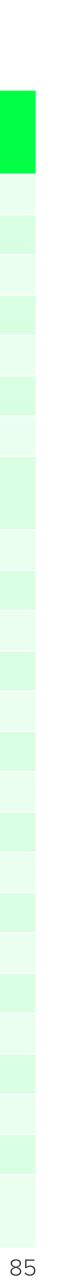
In construction

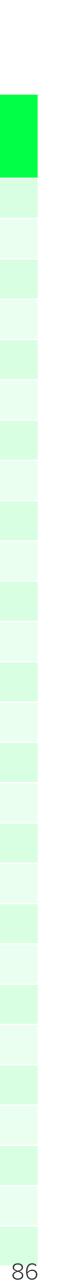

Guanghui Energy Methanol PlantChina2023ChemicalTarga Red Hills natural gas processing complexUSA2023Natural Gas Processing44.01 Project HajarOman2024Direct Air CaptureAir Product Blue But BetterCanada2024Hydrogen / Ammonia / FertiliserHafslund Oslo Celsio Waste-to-Energy PlantNorway2024Biomass to Power and HeatHeidelberg Materials Brevik Cement PlantNorway2024CementNorthern Lights Transport and StorageNorway2024Biomass to Power and HeatShell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothIceland2024Direct Air CaptureChina National Energy NingxiaChina2024Chemical	0.1 0.36 Under Evaluation r 3 0.4 0.4 1.5 0.38	 Enhanced Oil Recovery Dedicated Geological Storage Dedicated Geological Storage Enhanced Oil Recovery Dedicated Geological Storage Dedicated Geological Storage
44.01 Project HajarOman2024Direct Air CaptureAir Product Blue But BetterCanada2024Hydrogen / Ammonia / FertiliserHafslund Oslo Celsio Waste-to-Energy PlantNorway2024Biomass to Power and HeatHeidelberg Materials Brevik Cement PlantNorway2024CementNorthern Lights Transport and StorageNorway2024CO2 Transport / StorageShell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothLceland2024Direct Air Capture	Under Evaluationr30.40.41.5	Dedicated Geological Storage Enhanced Oil Recovery Dedicated Geological Storage
Air Product Blue But BetterCanada2024Hydrogen / Ammonia / FertiliserHafslund Oslo Celsio Waste-to-Energy PlantNorway2024Biomass to Power and HeatHeidelberg Materials Brevik Cement PlantNorway2024CementNorthern Lights Transport and StorageNorway2024CO2Shell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothLceland2024Direct Air Capture	r 3 0.4 0.4 1.5	Enhanced Oil Recovery Dedicated Geological Storage
Hafslund Oslo Celsio Waste-to-Energy PlantNorway2024Biomass to Power and HeatHeidelberg Materials Brevik Cement PlantNorway2024CementNorthern Lights Transport and StorageNorway2024CO2 Transport / StorageShell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothLceland2024Direct Air Capture	0.4 0.4 1.5	Dedicated Geological Storage
Heidelberg Materials Brevik Cement PlantNorway2024CementNorthern Lights Transport and StorageNorway2024CO2 Transport / StorageShell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothIceland2024Direct Air Capture	0.4 1.5	
Northern Lights Transport and StorageNorway2024CO2 Transport / StorageShell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothIceland2024Direct Air Capture	1.5	Dedicated Geological Storage
Shell Energy and Chemicals Park RotterdamNetherlands2024Biomass to Power and HeatCarbFix MammothIceland2024Direct Air Capture		
CarbFix Mammoth Iceland 2024 Direct Air Capture	0.38	Dedicated Geological Storage
		Dedicated Geological Storage
China National Energy NingxiaChina2024Chemical	0.03	Dedicated Geological Storage
	3	Enhanced Oil Recovery
Santos Cooper Basin Australia 2024 Natural Gas Processing	1.7	Dedicated Geological Storage
OCI Iowa Fertiliser Company USA 2025 Hydrogen / Ammonia / Fertiliser	r 0.45	Dedicated Geological Storage
CF Industries Donaldsonville USA 2025 Hydrogen / Ammonia / Fertiliser	r 2	Dedicated Geological Storage
Huaneng Longdong Energy BaseChina2025Power Generation and Heat	1.5	Dedicated Geological Storage
Linde Beaumont hydrogen plant USA 2025 Hydrogen / Ammonia / Fertiliser	r 2.2	Dedicated Geological Storage
Petronas Kasawari Malaysia 2025 Natural Gas Processing	3.3	Dedicated Geological Storage
Qatar Petroleum North Field EastQatar2025Natural Gas Processing	2.1	Under Evaluation
SilverstoneIceland2025Power Generation and Heat	0.03	Dedicated Geological Storage
STRATOS (1PointFive Direct Air Capture)USA2025Direct Air Capture	0.5	Dedicated Geological Storage
Air Products and Chemical Louisiana Clean Energy Complex USA 2026 Hydrogen / Ammonia / Fertiliser	r 5	Dedicated Geological Storage
QAFCO Ammonia-7 Blue Ammonia Facility Qatar 2026 Hydrogen / Ammonia / Fertiliser	r 1.5	Dedicated Geological Storage
CapturePoint Solutions Central Louisiana Regional Carbon USA 2027 CO ₂ Transport / Storage Storage (CENLA) Hub	10	Dedicated Geological Storage
Energy Transfer Haynesville Gas Processing (CENLA Hub) USA 2027 Natural Gas Processing	Under Evaluation	Dedicated Geological Storage
Baotou Steel Under Evaluation Iron and Steel Production	0.5	Dedicated Geological Storage
Xinjiang Jinlong ShenwuChinaUnder EvaluationPower Generation and Heat	0.2	Enhanced Oil Recovery
Yulin Integrated Coal-to-Liquification China Under Evaluation Chemical		

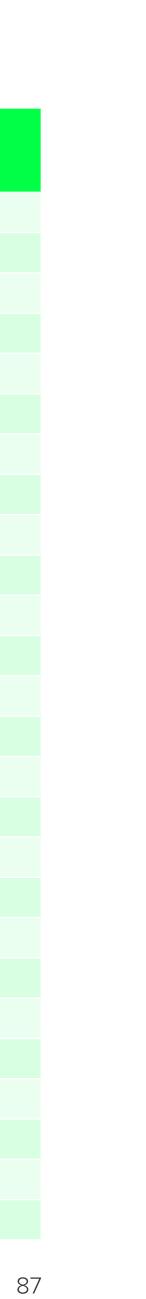

Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Bridgeport Energy Moonie	Australia	2024	CO ₂ Transport / Storage	0.2	Enhanced Oil Recovery
HeidelbergCement	USA	2024	Cement	2	Dedicated Geological Storage
Aemetis Keyes Ethanol	USA	2024	Ethanol	0.4	Dedicated Geological Storage
Air Liquide Refinery Rotterdam	Netherlands	2024	Hydrogen / Ammonia / Fertiliser	0.5	Dedicated Geological Storage
Bushmills Biorefinery	USA	2024	Ethanol	0.24	Dedicated Geological Storage
ExxonMobil Benelux Refinery	Netherlands	2024	Hydrogen / Ammonia / Fertiliser	Under Evaluation	Dedicated Geological Storage
FCL Regina Refinery	Canada	2024	Oil Refining	0.25	Dedicated Geological Storage
Horisont Energi Polaris Carbon Storage	Norway	2024	CO ₂ Transport / Storage	2	Dedicated Geological Storage
Summit Aberdeen Biorefinery	USA	2024	Ethanol	0.14	Dedicated Geological Storage
Summit Atkinson Biorefinery	USA	2024	Ethanol	0.16	Dedicated Geological Storage
Summit Casselton Biorefinery	USA	2024	Ethanol	0.5	Dedicated Geological Storage
Summit Central City Biorefinery	USA	2024	Ethanol	0.33	Dedicated Geological Storage
Summit Fairmont Biorefinery	USA	2024	Ethanol	0.34	Dedicated Geological Storage
Summit Galva Biorefinery	USA	2024	Ethanol	0.11	Dedicated Geological Storage
Summit Goldfield Biorefinery	USA	2024	Ethanol	0.22	Dedicated Geological Storage
Summit Grand Junction Biorefinery	USA	2024	Ethanol	0.34	Dedicated Geological Storage
Summit Granite Falls Biorefinery	USA	2024	Ethanol	0.18	Dedicated Geological Storage
Summit Heron Lake Biorefinery	USA	2024	Ethanol	0.19	Dedicated Geological Storage
Summit Huron Biorefinery	USA	2024	Ethanol	0.09	Dedicated Geological Storage
Summit Lamberton Biorefinery	USA	2024	Ethanol	0.16	Dedicated Geological Storage
Summit Lawler Biorefinery	USA	2024	Ethanol	0.57	Dedicated Geological Storage
Summit Madison Biorefinery	USA	2024	Ethanol	0.25	Dedicated Geological Storage
Summit Marcus Biorefinery	USA	2024	Ethanol	0.46	Dedicated Geological Storage
Summit Mason City Biorefinery	USA	2024	Ethanol	0.34	Dedicated Geological Storage
Summit Merrill Biorefinery	USA	2024	Ethanol	0.16	Dedicated Geological Storage
Summit Mid West Express Storage	USA	2024	CO ₂ Transport / Storage	12	Dedicated Geological Storage


Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Summit Mid West Express Trunk Pipeline	USA	2024	CO ₂ Transport / Storage	20	Dedicated Geological Storage
Summit Mina Biorefinery	USA	2024	Ethanol	0.4	Dedicated Geological Storage
Summit Mount Vernon Biorefinery	USA	2024	Ethanol	0.25	Dedicated Geological Storage
Summit Nevada Biorefinery	USA	2024	Ethanol	0.26	Dedicated Geological Storage
Venture Global LNG CP2	USA	2024	Natural Gas Processing	0.5	Dedicated Geological Storage
Summit Norfolk Biorefinery	USA	2024	Ethanol	0.15	Dedicated Geological Storage
Summit Obion Biorefinery	USA	2024	Ethanol	0.34	Dedicated Geological Storage
Summit Onida Biorefinery	USA	2024	Ethanol	0.23	Dedicated Geological Storage
Summit Otter Tail Biorefinery	USA	2024	Ethanol	0.17	Dedicated Geological Storage
Summit Plainview Biorefinery	USA	2024	Ethanol	0.32	Dedicated Geological Storage
Summit Redfield Biorefinery	USA	2024	Ethanol	0.17	Dedicated Geological Storage
Summit Shenandoah Biorefinery	USA	2024	Ethanol	0.24	Dedicated Geological Storage
Summit Sioux Center Biorefinery	USA	2024	Ethanol	0.19	Dedicated Geological Storage
Summit Steamboat Rock Biorefinery	USA	2024	Ethanol	0.23	Dedicated Geological Storage
Summit Superior Biorefinery	USA	2024	Ethanol	0.17	Dedicated Geological Storage
Summit Watertown Biorefinery	USA	2024	Ethanol	0.37	Dedicated Geological Storage
Summit Wentworth Biorefinery	USA	2024	Ethanol	0.26	Dedicated Geological Storage
Summit Wood River Biorefinery	USA	2024	Ethanol	0.35	Dedicated Geological Storage
Summit York Biorefinery	USA	2024	Ethanol	0.14	Dedicated Geological Storage
Whitecap Resources Southeast Saskatchewan Hub	Canada	2024	CO ₂ Transport / Storage	2.5	Dedicated Geological Storage
8 Rivers Coyote Clean Power	USA	2025	Power Generation and Heat	0.86	Under Evaluation
ADNOC Ghasha Concession Fields	United Arab Emirates	2025	Natural Gas Processing	Under Evaluation	Dedicated Geological Storage
ADNOC Natural gas processing plant	United Arab Emirates	2025	Natural Gas Processing	2.3	Enhanced Oil Recovery
G2 Net-Zero	USA	2025	Natural Gas Processing	4	Under Evaluation
Gerald Gentleman Station	USA	2025	Power Generation and Heat	4.3	Enhanced Oil Recovery
Golden Spread Electric Mustang Station	USA	2025	Power Generation and Heat	1.5	Dedicated Geological Storage

Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Lake Charles Methanol	USA	2025	Chemical	4	Dedicated Geological Storage
One Earth Energy Ethanol	USA	2025	Ethanol	0.5	Dedicated Geological Storage
Sinopec Shengli Power Plant	China	2025	Power Generation and Heat	1	Enhanced Oil Recovery
Amager Bakke Waste to Energy	Denmark	2025	Biomass to Power and Heat	0.5	Dedicated Geological Storage
East Coast Cluster Humber Pipeline	United Kingdom	2025	CO ₂ Transport / Storage	17	Dedicated Geological Storage
East Coast Cluster Teesside Pipeline	United Kingdom	2025	CO ₂ Transport / Storage	10	Dedicated Geological Storage
Hafslund Oslo Celsio - Truck Route	Norway	2025	CO ₂ Transport / Storage	0.4	Dedicated Geological Storage
LafargeHolcim Cement	USA	2025	Cement	1.6	Under Evaluation
Northern Endurance Storage Site	United Kingdom	2025	CO ₂ Transport / Storage	27	Dedicated Geological Storage
Orsted Asnaes CHP Plant	Denmark	2025	Power Generation and Heat	0.2	Under Evaluation
Orsted Avedore CHP Plant	Denmark	2025	Power Generation and Heat	0.2	Under Evaluation
Pilot Energy Cliff Head (Mid West Clean Energy)	Australia	2025	CO ₂ Transport / Storage	3	Dedicated Geological Storage
Project Greensand	Denmark	2025	CO ₂ Transport / Storage	8	Dedicated Geological Storage
Shell Polaris (Scotford Complex)	Canada	2025	Hydrogen / Ammonia / Fertiliser	0.75	Dedicated Geological Storage
Wolf Lamont Carbon Hub	Canada	2025	CO ₂ Transport / Storage	4	Dedicated Geological Storage
Yara Sluiskil	Netherlands	2025	Hydrogen / Ammonia / Fertiliser	0.8	Dedicated Geological Storage
BP Tangguh LNG	Indonesia	2026	Natural Gas Processing	3	Enhanced Oil Recovery
Minnkota Power Project Tundra	USA	2026	Power Generation and Heat	4	Dedicated Geological Storage
Project Interseqt - Hereford Ethanol Plant	USA	2026	Ethanol	0.35	Enhanced Oil Recovery
Project Interseqt - Plainview Ethanol Plant	USA	2026	Ethanol	0.35	Enhanced Oil Recovery
PTTEP Lang Lebah	Malaysia	2026	Natural Gas Processing	Under Evaluation	Dedicated Geological Storage
Repsol Sakakemang	Indonesia	2026	Natural Gas Processing	2	Dedicated Geological Storage
Capital Power Genesee CCS	Canada	2026	Power Generation and Heat	3	Dedicated Geological Storage
CarbFix CODA Transport and Storage	Iceland	2026	CO ₂ Transport / Storage	0.3	Dedicated Geological Storage
Chevron Bayou Bend	USA	2026	CO ₂ Transport / Storage	20	Dedicated Geological Storage
Porthos CO ₂ Transport and Storage	Netherlands	2026	CO ₂ Transport / Storage	2.5	Dedicated Geological Storage

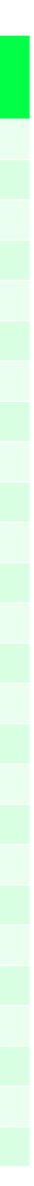

Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Wabash Valley Resources West Terre Haute fertilizer plant	USA	2026	Hydrogen / Ammonia / Fertiliser	1.65	Dedicated Geological Storage
Vertex HyNet Hydrogen	United Kingdom	2026	Hydrogen / Ammonia / Fertiliser	1.8	Dedicated Geological Storage
Cal Capture	USA	2027	Power Generation and Heat	1.55	Dedicated Geological Storage
St. Charles Clean Fuels Hydrogen Louisiana	USA	2027	Hydrogen / Ammonia / Fertiliser	Under Evaluation	Under Evaluation
BOC Teesside Hydrogen	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	0.2	Dedicated Geological Storage
Drax BECCS	United Kingdom	2027	Power Generation and Heat	8	Dedicated Geological Storage
ExxonMobil Baytown Low Carbon Hydrogen	USA	2027	Hydrogen / Ammonia / Fertiliser	7	Dedicated Geological Storage
FCL Belle Plaine Ethanol Complex	Canada	2027	Ethanol	0.25	Enhanced Oil Recovery
Harbour Energy Viking Transport and Storage	United Kingdom	2027	CO ₂ Transport / Storage	8	Dedicated Geological Storage
Hydrogen to Humber Saltend	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	0.89	Dedicated Geological Storage
Phillips 66 Humber Refinery	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	0.5	Dedicated Geological Storage
Santos Bayu-Undan	Timor-Leste	2027	Natural Gas Processing	10	Dedicated Geological Storage
Saudi Aramco Jubail Hub	Saudi Arabia	2027	Natural Gas Processing	9	Dedicated Geological Storage
SSE Thermal Keadby 3 Power Station	United Kingdom	2027	Power Generation and Heat	2.6	Dedicated Geological Storage
Stockholm Exergi BECCS	Sweden	2027	Biomass to Power and Heat	0.8	Dedicated Geological Storage
Stockholm Exergi BECCS Shipping Route	Sweden	2027	CO ₂ Transport / Storage	0.8	Dedicated Geological Storage
VPI Immingham Power Plant	United Kingdom	2027	Power Generation and Heat	7.1	Dedicated Geological Storage
Yara Hydrogen Texas	USA	2027	Hydrogen / Ammonia / Fertiliser	Under Evaluation	Dedicated Geological Storage
Cleco Diamond Vault	USA	2028	Power Generation and Heat	4	Dedicated Geological Storage
Heidelberg Materials Padeswood Cement	United Kingdom	2028	Cement	0.8	Dedicated Geological Storage
Prax Lindsey Carbon Capture (PLCCP)	United Kingdom	2028	Oil Refining	1	Dedicated Geological Storage
GE James M. Barry Electric Generating Plant	USA	2030	Power Generation and Heat	0.6	Under Evaluation
BASF Antwerp (Kairos@C)	Belgium	2030	Chemical	1.42	Dedicated Geological Storage
Pathways Alliance Oil Sands Pathways to Net Zero	Canada	2030	CO ₂ Transport / Storage	12	Dedicated Geological Storage
ION Polk Power Station	USA	2040	Power Generation and Heat	3.7	Dedicated Geological Storage
Calpine Baytown Energy Center	USA	Under Evaluation	Power Generation and Heat	2.5	Dedicated Geological Storage


Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Calpine Project Delta	USA	Under Evaluation	Power Generation and Heat	2.36	Dedicated Geological Storage
CPV Shay Energy Center (CPV West Virginia Natural Gas Power Station)	USA	Under Evaluation	Power Generation and Heat	Under Evaluation	Under Evaluation
EPRI Cane Run	USA	Under Evaluation	Power Generation and Heat	1.7	Dedicated Geological Storage
LafargeHolcim Ste. Genevieve Cement Plant	USA	Under Evaluation	Cement	2.9	Under Evaluation
Pertamina Jatibarang	Indonesia	Under Evaluation	Natural Gas Processing	Under Evaluation	Enhanced Oil Recovery
Prairie State Generating Station	USA	Under Evaluation	Power Generation and Heat	7.6	Dedicated Geological Storage
PTTEP Arthit	Thailand	Under Evaluation	Natural Gas Processing	1	Dedicated Geological Storage
Southern Company Farley DAC	USA	Under Evaluation	Direct Air Capture	0.005	Under Evaluation
Southern Company Plant Daniel Carbon Capture	USA	Under Evaluation	Power Generation and Heat	1.8	Dedicated Geological Storage
Calpine Texas Deer Park Energy Centre	USA	Under Evaluation	Power Generation and Heat	5	Dedicated Geological Storage
CRC Elk Hills Power	USA	Under Evaluation	Power Generation and Heat	1.4	Dedicated Geological Storage
Northern Plains Nitrogen Grand Forks Blue Ammonia	USA	Under Evaluation	Natural Gas Processing	0.5	Dedicated Geological Storage
NuGen Ethanol Plant	USA	Under Evaluation	Ethanol	0.45	Dedicated Geological Storage
Sumitomo Hydrogen Energy Supply Chain (HESC)	Australia	Under Evaluation	Hydrogen / Ammonia / Fertiliser	5	Dedicated Geological Storage
Venture Global LNG Calcasieu Pass	USA	Under Evaluation	Natural Gas Processing	0.5	Dedicated Geological Storage
Venture Global LNG Plaquemines	USA	Under Evaluation	Natural Gas Processing	0.5	Dedicated Geological Storage
Victorian Government CarbonNet	Australia	Under Evaluation	CO ₂ Transport / Storage	5	Dedicated Geological Storage


Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Harvestone Blue Flint Ethanol	USA	2024	Ethanol	0.2	Dedicated Geological Storage
CF Fertilisers Billingham Ammonia CCS	United Kingdom	2024	Hydrogen / Ammonia / Fertiliser	Under Evaluation	Under Evaluation
DUC Bifrost	Denmark	2024	CO ₂ Transport / Storage	3	Dedicated Geological Storage
Singleton Birch ZerCaL250	United Kingdom	2024	Cement	Under Evaluation	Dedicated Geological Storage
Aemetis Riverbank Ethanol	USA	2024	Ethanol	0.4	Dedicated Geological Storage
Equinor Hydrogen 2 Magnum	Netherlands	2024	Power Generation and Heat	2	Dedicated Geological Storage
Imperial Oil Strathcona refinery	Canada	2024	Hydrogen / Ammonia / Fertiliser	0.5	Under Evaluation
Frontier Carbon Solutions Holdings Sweetwater Carbon	USA	2024	CO ₂ Transport / Storage	2	Dedicated Geological Storage
Storage Hub					
Gulf Cryo MEG Plant	Saudi Arabia	2024	Chemical	Under Evaluation	Under Evaluation
Storegga Acorn Transport and Storage	United Kingdom	2024	CO ₂ Transport / Storage	5	Dedicated Geological Storage
Tarmac Buxton Lime Net Zero	United Kingdom	2024	Cement	0.02	Dedicated Geological Storage
Wolf Central Storage Hub Edmonton	Canada	2024	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Tallgrass Energy Eastern Wyoming Sequestration Hub	USA	2024	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
8 Rivers Capital Saskatchewan NET Power Plant	Canada	2025	Power Generation and Heat	0.95	Dedicated Geological Storage
Adams Fork Energy Clean Ammonia	USA	2025	Hydrogen / Ammonia / Fertiliser	2.9	Dedicated Geological Storage
ADNOC TA'ZIZ Blue Ammonia	United Arab Emirates	2025	Hydrogen / Ammonia / Fertiliser	0.8	Under Evaluation
Basin Electric Dry Fork	USA	2025	Power Generation and Heat	3	Dedicated Geological Storage
ADM Cedar Rapids	USA	2025	Ethanol	Under Evaluation	Dedicated Geological Storage
ADM Clinton	USA	2025	Ethanol	Under Evaluation	Dedicated Geological Storage
Air Liquide Normandy	France	2025	Hydrogen / Ammonia / Fertiliser	0.6	Dedicated Geological Storage
Aker BP Poseidon	Norway	2025	CO ₂ Transport / Storage	8	Dedicated Geological Storage
Bison Meadowbrook Storage Hub	Canada	2025	CO ₂ Transport / Storage	3	Dedicated Geological Storage
Cadent Hydrogen Production	United Kingdom	2025	Hydrogen / Ammonia / Fertiliser	3	Dedicated Geological Storage
Cadent Hynet CO ₂ Transport and Storage	United Kingdom	2025	CO ₂ Transport / Storage	4.5	Dedicated Geological Storage
Clean Energy Systems Carbon Negative Energy Plant - Central Valley	USA	2025	Power Generation and Heat	0.32	Dedicated Geological Storage

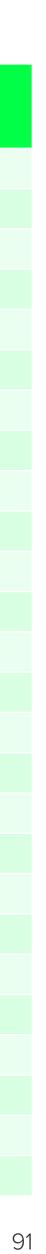
Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Clean Energy Systems Mendota BECCS	USA	2025	Biomass to Power and Heat	0.3	Dedicated Geological Storage
CNPC Junggar Basin Hub	China	2025	CO ₂ Transport / Storage	1.5	Enhanced Oil Recovery
CNPC Songliao Basin Hub	China	2025	Chemical	3	Under Evaluation
CRC Carbon TerraVault I	USA	2025	CO ₂ Transport / Storage	1.24	Dedicated Geological Storage
Denbury Leo Sequestration Site	USA	2025	CO ₂ Transport / Storage	10	Dedicated Geological Storage
Energean Prinos Sigma plant	Greece	2025	Natural Gas Processing	1	Dedicated Geological Storage
Energean Prinos Transport and Storage	Greece	2025	CO ₂ Transport / Storage	3	Dedicated Geological Storage
Equinor North Sea Pipeline Zeebrugge	Belgium	2025	CO ₂ Transport / Storage	40	Dedicated Geological Storage
ExxonMobil South East Australia Carbon Capture Hub	Australia	2025	Natural Gas Processing	2	Dedicated Geological Storage
Holcim Milaki Plant	Greece	2025	Cement	1	Dedicated Geological Storage
Horisont Energi AS Barents Blue	Norway	2025	Hydrogen / Ammonia / Fertiliser	2	Dedicated Geological Storage
INEOS Greenport Scandinavia	Denmark	2025	Biomass to Power and Heat	1.5	Dedicated Geological Storage
Liberty CCUS hub	USA	2025	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Lone Cypress Hydrogen	USA	2025	Hydrogen / Ammonia / Fertiliser	O.1	Under Evaluation
Mitsui Mid West Modern Energy Hub	Australia	2025	Hydrogen / Ammonia / Fertiliser	Under Evaluation	Dedicated Geological Storage
Navigator Heartland Greenway CO ₂ Transport and Storage	USA	2025	CO ₂ Transport / Storage	15	Dedicated Geological Storage
NET Power Plant	United Kingdom	2025	Power Generation and Heat	Under Evaluation	Under Evaluation
Net Zero Teesside - CCGT Facility	United Kingdom	2025	Power Generation and Heat	2	Dedicated Geological Storage
Pembina Alberta Carbon Grid	Canada	2025	CO ₂ Transport / Storage	20	Dedicated Geological Storage
Poet Arthur, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
KEPCO Korea-CCS 1 & 2	South Korea	2025	Power Generation and Heat	1	Dedicated Geological Storage
Poet Ashton, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Big Stone, SD	USA	2025	Ethanol	0.28	Dedicated Geological Storage
KNOC Donghae	South Korea	2025	CO ₂ Transport / Storage	1.2	Dedicated Geological Storage
Poet Chancellor, SD	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Coon Rapids, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Lehigh Cement Plant	Canada	2025	Cement	0.78	Under Evaluation
					8

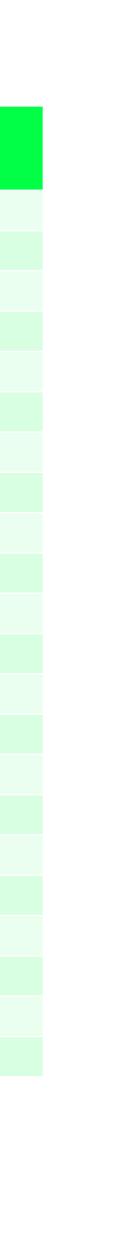
Facility	Country	Operational date	e Facility industry	Capture, transport and/or	Facility storage code
				storage capacity (Mtpa CO ₂)	
Poet Corning, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Emmetsburg, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Fairbank, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Fairmont, NE	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Gowrie, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Groton, SD	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Hanlontown, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Hudson, SD	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Iowa Falls, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Jewell, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
NextDecade Rio Grande LNG	USA	2025	Natural Gas Processing	5.5	Dedicated Geological Storage
Poet Menlo, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Mitchell, SD	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Poet Shell Rock, IA	USA	2025	Ethanol	0.28	Dedicated Geological Storage
Preem Lysekil Refinery	Sweden	2025	Hydrogen / Ammonia / Fertiliser	0.5	Dedicated Geological Storage
Progressive Energy Vertex Hydrogen	United Kingdom	2025	Oil Refining	1.8	Dedicated Geological Storage
Redcar Energy Centre	United Kingdom	2025	Biomass to Power and Heat	0.4	Under Evaluation
PacifiCorp Dave Johnston Plant	USA	2025	Power Generation and Heat	Under Evaluation	Enhanced Oil Recovery
PAU Central Sulawesi Clean Fuel Ammonia	Indonesia	2025	Hydrogen / Ammonia / Fertiliser	2	Dedicated Geological Storage
Pieridae Energy Caroline Power	Canada	2025	Power Generation and Heat	3	Dedicated Geological Storage
Shell Atlas Carbon Storage Hub	Canada	2025	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Storegga Acorn Hydrogen	United Kingdom	2025	Hydrogen / Ammonia / Fertiliser	0.4	Dedicated Geological Storage
Wolf Mt. Simon Hub (Iowa Illinois Carbon Pipeline)	USA	2025	CO ₂ Transport / Storage	12	Dedicated Geological Storage
Starwood Energy Power Plant	USA	2025	Power Generation and Heat	Under Evaluation	Enhanced Oil Recovery
The Illinois Clean Fuels	USA	2025	Chemical	8.13	Dedicated Geological Storage
1PointFive Bluebonnet Hub	USA	2026	CO ₂ Transport / Storage	8	Dedicated Geological Storage



Facility	Country	Operational date	e Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Beach Energy Otway Natural Gas Plant	Australia	2026	Natural Gas Processing	0.2	Dedicated Geological Storage
Acorn Direct Air Capture	United Kingdom	2026	Direct Air Capture	1	Dedicated Geological Storage
Air Liquide Zeeland Refinery Azur	Netherlands	2026	Hydrogen / Ammonia / Fertiliser	0.8	Under Evaluation
Carbon Clean CEMEX	Germany	2026	Cement	0.03	Under Evaluation
Cinfracap Transport	Sweden	2026	CO ₂ Transport / Storage	4	Dedicated Geological Storage
Denbury Orion Sequestration Site	USA	2026	CO ₂ Transport / Storage	10	Dedicated Geological Storage
Enbridge Open Access Wabamun Carbon Hub	Canada	2026	CO ₂ Transport / Storage	4	Dedicated Geological Storage
Enhance Energy Origins Carbon Storage Hub	Canada	2026	CO ₂ Transport / Storage	20	Dedicated Geological Storage
ENI Structures A&E	Libya	2026	Natural Gas Processing	Under Evaluation	Dedicated Geological Storage
Fidelis Norne Carbon Storage Hub	Denmark	2026	CO ₂ Transport / Storage	10	Dedicated Geological Storage
FREVAR Waste to Energy	Norway	2026	Biomass to Power and Heat	0.06	Dedicated Geological Storage
Höegh LNG Stella Maris	Under Evaluation	2026	CO ₂ Transport / Storage	10	Under Evaluation
Horisont Energi Errai	Norway	2026	CO ₂ Transport / Storage	8	Dedicated Geological Storage
INPEX CCS Darwin	Australia	2026	Natural Gas Processing	2	Dedicated Geological Storage
Kvitebjørn Varme Kvitebjørn Waste to Energy	Norway	2026	Biomass to Power and Heat	0.06	Dedicated Geological Storage
Neptune Energy L10	Netherlands	2026	CO ₂ Transport / Storage	9	Dedicated Geological Storage
KeyState Natural Gas Synthesis	USA	2026	Natural Gas Processing	0.3	Dedicated Geological Storage
Lapis Energy El Dorado	USA	2026	Hydrogen / Ammonia / Fertiliser	0.45	Dedicated Geological Storage
Port of Rotterdam Delta Corridor Pipeline Network	Netherlands	2026	CO ₂ Transport / Storage	22	Dedicated Geological Storage
Nucor Steel DRI	USA	2026	Iron and Steel Production	0.8	Under Evaluation
SUEZ Tees Valley Energy Recovery Facility (TVERF)	United Kingdom	2026	Biomass to Power and Heat	Under Evaluation	Dedicated Geological Storage
Synergia Energy Damhead Pipeline	United Kingdom	2026	CO ₂ Transport / Storage	7.6	Dedicated Geological Storage
Synergia Energy Damhead Power Station	United Kingdom	2026	Power Generation and Heat	Under Evaluation	Dedicated Geological Storage
Synergia Energy Grain Power Station	United Kingdom	2026	Power Generation and Heat	Under Evaluation	Dedicated Geological Storage
Synergia Energy Isle of Grain Transport	United Kingdom	2026	CO ₂ Transport / Storage	1.2	Dedicated Geological Storage
Synergia Energy Medway Transport and Storage	United Kingdom	2026	CO ₂ Transport / Storage	7.6	Dedicated Geological Storage

Facility	Country	Operational date	e Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
Talos Coastal Bend	USA	2026	CO ₂ Transport / Storage	1.5	Dedicated Geological Storage
Talos Harvest Bend Louisiana Transport and Storage	USA	2026	CO ₂ Transport / Storage	5	Dedicated Geological Storage
Whitecap Resources Rolling Hills Hub	Canada	2026	CO ₂ Transport / Storage	2	Dedicated Geological Storage
Yosemite Hydrogen Project	USA	2026	Hydrogen / Ammonia / Fertiliser	4	Dedicated Geological Storage
Velocys Bayou Fuels Negative Emission	USA	2026	Chemical	1.5	Dedicated Geological Storage
Aramis Hub	Netherlands	2027	CO ₂ Transport / Storage	5	Dedicated Geological Storage
BP H2Teesside	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	2	Dedicated Geological Storage
Clean Energy Systems BiCRS Plant - Madera County	USA	2027	Power Generation and Heat	0.6	Dedicated Geological Storage
Clean Hydrogen Works Ascension Clean Energy	USA	2027	Hydrogen / Ammonia / Fertiliser	6	Dedicated Geological Storage
ENI Ravenna Hub	Italy	2027	CO ₂ Transport / Storage	4	Dedicated Geological Storage
Fluxys Ghent Carbon Hub	Netherlands	2027	CO ₂ Transport / Storage	6	Dedicated Geological Storage
Grannus Blue	USA	2027	Hydrogen / Ammonia / Fertiliser	0.37	Under Evaluation
Kellas Midstream H2NorthEast	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	2	Dedicated Geological Storage
Lafarge Cement GO4ECOPLANET	Poland	2027	Cement	1	Dedicated Geological Storage
Novatek Yamal LNG	Russia	2027	Natural Gas Processing	10	Dedicated Geological Storage
SSE Thermal Peterhead Power Station	United Kingdom	2027	Power Generation and Heat	1.5	Dedicated Geological Storage
Suez Waste to Energy	United Kingdom	2027	Biomass to Power and Heat	0.24	Dedicated Geological Storage
Uniper Humber Hub Blue Project	United Kingdom	2027	Hydrogen / Ammonia / Fertiliser	1.6	Dedicated Geological Storage
Växjö Energi CHP Sandviksverket	Sweden	2027	Biomass to Power and Heat	0.18	Under Evaluation
TotalEnergies Papua LNG	Papua New Guinea	2027	Natural Gas Processing	1	Dedicated Geological Storage
Air Liquide CalCC	France	2028	Cement	0.6	Dedicated Geological Storage
Equinor Smeaheia (Norway)	Norway	2028	CO ₂ Transport / Storage	20	Dedicated Geological Storage
EQIOM K6	France	2028	Cement	0.8	Under Evaluation
Ervia Cork	Ireland	2028	Power Generation and Heat	2.5	Dedicated Geological Storage
Holcim GO4ZERO Obourg Plant	Belgium	2028	Cement	1.1	Dedicated Geological Storage
HeidelbergCement ANRAV	Bulgaria	2028	Cement	0.8	Dedicated Geological Storage




Facility	Country	Operational date	Facility industry	Capture, transport and/or	Facility storage code
				storage capacity (Mtpa CO ₂)	
Holcim KOdeCO Koromačno Plant	Croatia	2028	Cement	0.37	Dedicated Geological Storage
Pertamina Sukowati	Indonesia	2028	Oil Refining	1.4	Enhanced Oil Recovery
Santos Reindeer	Australia	2028	CO ₂ Transport / Storage	4	Dedicated Geological Storage
Suncor and ATCO Heartland Hydrogen	Canada	2028	Hydrogen / Ammonia / Fertiliser	2	Under Evaluation
Carbone Aceh Arun Hub	Indonesia	2029	CO ₂ Transport / Storage	1.5	Dedicated Geological Storage
CO ₂ NTESSA	Croatia	2029	Cement	0.7	Dedicated Geological Storage
Heidelberg Materials GeZero Cement	Germany	2029	Cement	0.7	Dedicated Geological Storage
Borealis Antwerp	Belgium	2030	Chemical	Under Evaluation	Dedicated Geological Storage
Cementa Slite Cement Plant	Sweden	2030	Cement	1.8	Dedicated Geological Storage
ENEOS Northern to Western Kyushu Offshore	Japan	2030	CO ₂ Transport / Storage	3	Dedicated Geological Storage
Exxonmobil Antwerp Refinery	Belgium	2030	Chemical	Under Evaluation	Dedicated Geological Storage
ExxonMobil Houston Ship Channel Innovation Zone	USA	2030	CO ₂ Transport / Storage	50	Dedicated Geological Storage
ExxonMobil Blue Hydrogen Fawley Refinery	United Kingdom	2030	Hydrogen / Ammonia / Fertiliser	2	Dedicated Geological Storage
Ineos Antwerp	Belgium	2030	Chemical	Under Evaluation	Dedicated Geological Storage
Grand Ouest CO ₂	France	2030	CO ₂ Transport / Storage	2.6	Dedicated Geological Storage
INPEX Metropolitan Area	Japan	2030	CO ₂ Transport / Storage	1	Dedicated Geological Storage
ITOCHU Tohoku Region West Coast	Japan	2030	CO ₂ Transport / Storage	2	Dedicated Geological Storage
JAPEX East Niigata Area	Japan	2030	CO ₂ Transport / Storage	1.5	Dedicated Geological Storage
JAPEX Tomakomai Area	Japan	2030	CO ₂ Transport / Storage	1.5	Dedicated Geological Storage
Mitsubishi Corp Oceania	Japan	2030	CO ₂ Transport / Storage	2	Dedicated Geological Storage
Mitsui Offshore Malay	Japan	2030	CO ₂ Transport / Storage	2	Dedicated Geological Storage
RWE Pembroke Power Station	United Kingdom	2030	Power Generation and Heat	5	Under Evaluation
Wintershall Dea CO ₂ nnectNow	Germany	2032	CO ₂ Transport / Storage	40	Under Evaluation
ArcelorMittal Texas (formerly voestalpine Texas)	USA	Under Evaluation	Iron and Steel Production	Under Evaluation	Under Evaluation
Bakken Energy Resources Heartland Hydrogen Hub	USA	Under Evaluation	Power Generation and Heat	Under Evaluation	Under Evaluation
8 Rivers Whitetail Clean Energy	United Kingdom	Under Evaluation	Power Generation and Heat	0.8	Dedicated Geological Storage

Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
ARC Resources Greenview Region	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Bison North Drumheller Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Borg CO ₂	Norway	Under Evaluation	CO ₂ Transport / Storage	0.63	Dedicated Geological Storage
C.GEN North Killingholme Power	United Kingdom	Under Evaluation	Power Generation and Heat	Under Evaluation	Dedicated Geological Storage
Chevron San Joaquin	USA	Under Evaluation	Power Generation and Heat	1	Under Evaluation
Cementir Aalborg Plant	Denmark	Under Evaluation	Cement	0.4	Dedicated Geological Storage
City of Medicine Hat Project Clear Horizon	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
CRC InEnTec Bioenergy	USA	Under Evaluation	Ethanol	0.1	Dedicated Geological Storage
Crescent Midstream Louisiana Offshore Hub	USA	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Daya Bay Hub	China	Under Evaluation	CO ₂ Transport / Storage	10	Under Evaluation
Encyclis Protos Energy Recovery Facility	United Kingdom	Under Evaluation	Biomass to Power and Heat	0.38	Dedicated Geological Storage
Enhance Grand Prairie Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Entropy Bow River Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	5	Dedicated Geological Storage
ExxonMobil Indonesia Regional Storage Hub	Indonesia	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Under Evaluation
Heartland Generation Battle River Carbon Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Fidelis New Energy Cyclus Power Generation	USA	Under Evaluation	Biomass to Power and Heat	2	Under Evaluation
Fjernvarme Fyn Odense CHP plant	Denmark	Under Evaluation	Biomass to Power and Heat	Under Evaluation	Under Evaluation
Fortum Waste Nyborg	Denmark	Under Evaluation	Biomass to Power and Heat	Under Evaluation	Under Evaluation
FS Lucas do Rio Verde BECCS	Brazil	Under Evaluation	Ethanol	0.4	Under Evaluation
IPL Alberta Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	6	Dedicated Geological Storage
Harvestone Dakota Spirit AgEnergy	USA	Under Evaluation	Ethanol	0.2	Dedicated Geological Storage
Holcim Exshaw Cement	Canada	Under Evaluation	Cement	1	Dedicated Geological Storage
Kiwetinohk Maskwa Swan Hills Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Kiwetinohk Opal Carbon Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
ldku Egypt	Egypt	Under Evaluation	Natural Gas Processing	Under Evaluation	Under Evaluation
Motor Oil Hellas IRIS	Greece	Under Evaluation	Hydrogen / Ammonia / Fertiliser	0.5	Dedicated Geological Storage

Facility	Country	Operational date	Facility industry	Capture, transport and/or storage capacity (Mtpa CO ₂)	Facility storage code
NorthRiver Grand Prairie Net Zero Gateway Storage Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Onyx Power Blue Hydrogen Production Plant	Netherlands	Under Evaluation	Hydrogen / Ammonia / Fertiliser	2.5	Under Evaluation
RETI East Calgary Region Carbon Sequestration Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
RWE Stallingborough	United Kingdom	Under Evaluation	Power Generation and Heat	2	Dedicated Geological Storage
RWE Straythorpe	United Kingdom	Under Evaluation	Power Generation and Heat	4	Dedicated Geological Storage
SNOC Sharjah	United Arab Emirates	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Synergy Energy Medway Power Station	United Kingdom	Under Evaluation	Power Generation and Heat	Under Evaluation	Dedicated Geological Storage
Tidewater Brazeau Carbon Sequestration Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Tidewater Ram River Carbon Sequestration Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Titan Cement IFESTOS	Greece	Under Evaluation	Cement	1.9	Dedicated Geological Storage
Tourmaline Clearwater	Canada	Under Evaluation	CO ₂ Transport / Storage	10	Under Evaluation
Vault 44.01 Rocky Mountain Carbon Vault	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Vault 44.01 Athabasca Banks Carbon Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Viridor Runcorn Waste Incineration	United Kingdom	Under Evaluation	Biomass to Power and Heat	0.9	Dedicated Geological Storage
West Lake Pincher Creek Carbon Sequestration Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	2.7	Dedicated Geological Storage
Wintershall Dea Havstjerne	Norway	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Wintershall Dea Luna	Norway	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
SaskPower The Shand	Canada	Under Evaluation	Power Generation and Heat	2	Enhanced Oil Recovery
Wolf Central Alberta Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Sempra Hackberry Carbon Sequestration	USA	Under Evaluation	Natural Gas Processing	2	Dedicated Geological Storage
Wolf East Calgary Region Carbon Sequestration Hub	Canada	Under Evaluation	CO ₂ Transport / Storage	Under Evaluation	Dedicated Geological Storage
Woodside Burrup Hub	Australia	Under Evaluation	CO ₂ Transport / Storage	5	Under Evaluation

7.0 APPENDIX

REGIONAL OVERVIEW	5.0 ANALYSIS	6.0 FACILITIES LIST	7.0 APPEN

ACRONYMS

ACCU Australian Carbon Credit Unit ADNOC Abu Dhabi National Oil Company **BECCS** Biooenergy with CCS CCS Carbon Capture and Storage **CCUS** Carbon Capture Utilisation and Storage **CDR** Carbon Dioxide Removal **CO**, Carbon Dioxide **COP** Conference of the Parties **DAC** Direct Air Capture **DACCS** Direct Air Capture with Carbon Storage **DOE** US Department of Energy EC European Commission **EOR** Enhanced Oil Recovery **EPA** Environmental Protection Agency **EPC** Engineer, Procure, Construct **EPSs** Emission Performance Standards ESG Environmental, Social and Corporate Governance **ETS** Emissions Trading System **EU** European Union **FEED** Front-End Engineering Design FFS Fee for Service **GFC** The Green Climate Fund **GHG** Greenhouse Gas Gt Gigatonne **GW** Gigawatt **IEA** International Energy Agency **IEA-SDS** IEA's Sustainable Development Scenario **IMO** International Maritime Organisation **IPCC** Intergovernmental Panel on Climate Change **IRS** Treasury and Internal Revenue Service JCM Joint Crediting Mechanism

JOGMEC Japan Oil, Gas and Metals National Corporation LCFS Low Carbon Fuel Standard **LEDS** Long Term Low Greenhouse Gas Development Strategies **LNG** Liquified Natural Gas MEE Ministry of Ecology and Environment **MMV** Monitoring, Measurement and Verification Mt Million Metric Tonnes MTPA Million tonnes per annum **MW** Megawatt **NDC** Nationally Determined Contribution **NET** Negative Emissions Technology **NETL** National Energy Technology Laboratory **NPV** Net present value **NZE** Net zero emissions **PV** Photovoltaic **R&D** Research and Development RD&D Research, Development and Demonstration **SDS** Sustainable Development Scenario SLL Sustainability Linked Loan **SMR** Steam Methane Reforming **SOE** State Owned Enterprise **TWH** Terrawatt Hour **UNFCCC** United Nations Framework Convention on Climate Change **UAE** United Arab Emirates **UN** SDGs UN's Sustainable Development Goals VCM Voluntary Carbon Market WTE Waste to Energy

REFERENCES

Section 3.1 Global facilities and trends

K-Line, https://www.kline.co.jp/en/news/carbon-neutral/ carbon-neutral5923150663050283812/main/0/ link/221219EN.pdf

2.

NYK Line, https://www.nyk.com/english/ news/2023/20230609_02.html

3.

Mitsui O.S.K Lines https://www.mol.co.jp/en/pr/2023/23085.html

Mitsubishi Heavy Industries, https://www.mhi.com/news/23062901.html

Clean Energy Wire, https://www.cleanenergywire.org/factsheets/ guest-climate-neutrality-puts-ccs-back-tablegermany#four

6.

Global CCS Institute,

https://www.globalccsinstitute.com/newsmedia/press-room/media-releases/the-ukgovernment-unveils-significant-ccs-funding-in-2023-spring-budget

7.

Akin,

https://www.akingump.com/en/insights/blogs/ speaking-sustainability/indonesias-newccsccus-regulations-promotion-of-energytransition-in-southeast-asia

8.

Aramco,

https://www.aramco.com/en/sustainability/ climate-change/managing-our-footprint/carboncapture-utilization-and-storage

9.

CGTN.

https://news.cgtn.com/news/2023-06-03/ Chinese-energy-giant-launches-mega-carboncapture-project-1kks0q1BvbO/index.html

10.

1POINTFIVE, https://www.1pointfive.com/1pointfive-holdsgroundbreaking

11.

McKinsey & Company,

https://www.mckinsey.com/industries/oil-andgas/our-insights/the-world-needs-to-captureuse-and-store-gigatons-of-CO2-where-andhow#/

12.

Wood Mackenzie,

https://www.woodmac.com/news/opinion/ccus 2023-outlook/

13.

Northern Lights,

https://norlights.com/news/northern-lightsenters-into-cross-border-transport-and-storageagreement-with-orsted/

14.

The Maritime Executive. https://maritime-executive.com/article/hyundaireceives-order-for-world-s-first-large-ICO₂carriers

Section 3.3 Status of CCS finance

McKinsey & Company, Climate investing: Continuing breakout growth through uncertain times, report, 13 March 2023, https://www.mckinsey.com/capabilities/ sustainability/our-insights/climate-investingcontinuing-breakout-growth-through-uncertaintimes

Crunchbase, Global funding slide in 2022 sets stage for another tough year, 5 January 2023, report,

https://news.crunchbase.com/venture/global-vcfunding-slide-q4-2022/

Morningstar, US Sustainable funds face growing pains in 2022, report, https://www.morningstar.com/lp/sustainablefunds-landscape-report

Lu S, Zou C, China 30/60 Tracking the financing of China's Green Transition, 13 March 2023, Rhodium Group report, https://rhg.com/research/china-30-60-trackingthe-financing-of-chinas-green-transition/

Caramichael J, Rapp A, The green corporate bond issuance premium, June 2022, US Federal Reserve Bank report, https://www.federalreserve.gov/econres/ifdp/ the-green-corporate-bond-issuance-premium htm

Section 4.1 Americas

Preliminary Report: The Climate and Energy Impacts of the Inflation Reduction Act of 2022,

https://repeatproject.org/docs/REPEAT_IRA_ Prelminary_Report_2022-09-21.pdf,

Building a clean energy economy: a guidebook to the inflation reduction act's investments in clean energy and climate action,

https://www.whitehouse.gov/wp-content/ uploads/2022/12/Inflation-Reduction-Act-Guidebook.pdf

Carbon Capture and Sequestration (CCS) in the United States,

https://sqp.fas.org/crs/misc/R44902.pdf

Jenkins, J.D., Schivley, G., Mayfield, E., Patankar, N., Farbes, J., and Jones, R. (2023), Project Findings on the Emissions Impacts of the Inflation Reduction Act and Infrastructure Investment and Jobs Act, https://doi.org/10.5281/zenodo.7826713

Impact of IRA, IIJA, CHIPS, And Energy Act of 2020 on Clean Technologies: Deep Dive: Carbon, Capture, Utilization, and Storage, https://breakthroughenergy.org/wp-content/ uploads/2023/04/CCUS-Cleantech-Policy-Impact-Assessment.pdf

6.

J.D. Jenkins, et al., "Preliminary Report: The Climate and Energy Impacts of the Inflation Reduction Act of 2022," REPEAT Project (August 2022), https://repeatproject.org/docs/REPEAT_IRA_

Prelminary_Report_2022-08-04.pdf

H.R.4346 – Chips and Science Act, https://www.congress.gov/bill/117th-congress/ house-bill/4346

8.

Al Berta's Emissions Reduction and Energy Development Plan. https://www.alberta.ca/emissions-reductionand-energy-development-plan.aspx

9.

Alberta government, https://open.alberta.ca/ dataset?tags=carbon+capture+ utilization+and+storage

10.

Climate Change Supplement, https://issuu.com/estantepetrobras/docs/ climate_change_suplement, issued March 2023

11.

Upstream Online, Plans emerge for Brazil's first CCS hub as Petrobras eyes possible partnership with Shell, https://www.upstreamonline.com/energytransition/plans-emerge-for-brazil-s-first-ccshub-as-petrobras-eyes-possible-partnershipwith-shell/2-1-1443702

12.

California Resources Corporation, 2023, https://www.crc.com/carbon-terravault/default. <u>aspx</u>

13.

CapturePoint, https://www.capturepointllc.com

14.

Chevron, https://www.chevron.com/newsroom/2022/ g3/bayou-bend-aims-to-be-first-us-offshorecarbon-storage-hub

15.

Carbonvert, https://carbonvert.com/projects/

16.

Denbury, https://denbury.com/operations/carbonsolutions/

17.

Geoscience BC, https://www.geosciencebc.com/collaboration/ project-concents/*carbon

18.

Talos Energy, https://www.talosenergy.com/operations/ carbon-capture-and-sequestration/default.aspx

Section 4.2 APAC

AZEC is composed of 11 countries, including Japan, Australia and all members of the Association of Southeast Asian Nations (ASEAN) except Myanmar.

Baselines are permitted GHG emissions. Under the new Safeguard Rules, baselines for existing facilities will initially be set as a hybrid between site-specific and industry average emissions intensity values, transitioning towards industry average intensity values by 2030. Baselines for new facilities will be set at industry best practice, which is zero.

3.

Department of Climate Change, Energy the Environment and Water, Safeguard Mechanism (Crediting) Amendment Act 2023, 2023.

Department of Mines, Industry Regulation and Safety (WA), Petroleum Legislation Amendment Bill (No. 2) 2022, 2022.

5.

Standing Committee on Climate Change, Energy, Environment and Water, 2023, Inquiry into the 2009 and 2013 amendments to the 1996 Protocol to the Convention on the prevention of marine pollution by dumping of wastes and other matter, 1972 (London Protocol), 2023.

TCRK announces carbon capture project with Asia Cement – Cement industry news from Global Cement, https://www.globalcement.com/news/ item/14926-tcrk-announces-carbon-captureproject-with-asia-cement

HMM partners with PANASIA to study onboard carbon capture system, https://www.carboncapturejournal.com/news/ hmm-partners-with-panasia-to-study-onboardcarbon-capture-system/5221.aspx?Category=all

8.

BASF and Samsung Heavy Industries collaborate on Carbon Capture & Storage onboard maritime vessels, https://www.basf.com/global/en/media/newsreleases/2022/09/p-22-339.html

https://www.jogmec.go.jp/english/news/release/ news_10_00036.html

10.

https://www.meti.go.jp/shingikai/energy_ environment/ccs_choki_roadmap/ pdf/20230310_1.pdf

11.

https://www.mitsubishicorp.com/jp/en/pr/ archive/2023/html/0000051164.html

12.

https://www.meti.go.jp/english/ press/2023/0613_001.html

13.

https://eciu.net/netzerotracker

14.

Japan to propose carbon capture rules with ASEAN, Australia, NIKKEI Asia, 22 June 2023,

https://asia.nikkei.com/Spotlight/Environment/ Climate-Change/Japan-to-propose-carboncapture-rules-with-ASEAN-Australia

15.

Four Japanese majors team up on CCS value chain study utilizing ship transportation, Offshore Energy, 26 January 2023,

https://www.offshore-energy.biz/four-japanesemajors-team-up-on-ccs-value-chain-studyutilizing-ship-transportation/

16.

Tokyo Gas Co., Ltd. pursues carbon removal with agreement to invest in and collaborate with Global Thermostat, CISION PR Newswire, 19 January 2023,

https://www.prnewswire.com/news-releases/ tokyo-gas-co-ltd-pursues-carbon-removal-withagreement-to-invest-in-and-collaborate-withglobal-thermostat-301725493.html

17.

Aathira Perinchery & The Wire, 2022; Business Standard, 2022; UNFCC, 2016.

18.

NITI Aayog et al., 2022.

19.

Ministry of Environment & Government of India, 2023.

20.

Ministry of Science and Technology & Government of India, 2022.

21.

https://www.energy.gov/articles/us-and-indiaadvance-partnership-clean-energy

Section 4.3 Europe and UK

Global CCS Institute, 2022 CCS Global Status Report.

2.

Danish Energy Agency (2022). Very first tender of CO₂ storage licenses is opening.

3.

North Sea Transition Authority (2022). Bids invited in UK's first-ever carbon storage licensing round.

North Sea Transition Authority (2022). Carbon storage licensing round attracts 26 bids.

Norwegian Petroleum Directorate (2022). Licenses for carbon storage: 2022.

Northern Lights (2022). Major milestone for decarbonising Europe.

TotalEnergies (2021). Netherlands: TotalEnergies, Shell Netherlands, EBN and Gasunie Form Partnership to Develop the Offshore Aramis CO₂ Transport and Sequestration Project.

European Union (2023): https://climate.ec.europa.eu/system/ files/2023-05/policy_ccs_implementation_ presentations_20230330_en.pdf

Danish energy Agency (2023): https://ens.dk/en/press/first-tender-ccussubsidy-scheme-has-been-finalized-danishenergy-agency-awards-contract

10.

A pilot CO₂ capture plant has been operating at the Baimashan Cement Factory in China since 2018. Captured CO₂ is sold to industrial customers.

11.

Celsio Oslo (2023):

https://kommunikasjon.ntb.no/pressemelding/ karbonfangstprosjektet-pa-klemetsrudgjennomforer-en-kostnadsreduserende-fase?p ublisherId=17848166&releaseId=17964354&lan <u>g=no</u>

12.

https://www.yara.com/news-and-media/news/ archive/news-2022/major-milestone-fordecarbonising-europe/

13.

https://norlights.com/news/northern-lightsenters-into-cross-border-transport-and-storageagreement-with-orsted/

14.

https://www.neptuneenergy.com/esg/l10-areaccs-development

15.

A Carbon Storage Licence allows developers to appraise sites for storage, with an NSTA permit and a lease from The Crown Estate/Crown Estate Scotland subsequently required before storage activity can begin.

16.

Swedish Energy Agency, https://www.energimyndigheten.se/en/ innovations-r--d/energyintensive-industry/theindustrial-leap/

17.

Fluxys (2022). Fluxys and Equinor launch solution for large-scale decarbonisation in North-Western Europe.

18.

OGE (2022). OGE and TES join forces to develop a 1,000 km CO₂ transmission system.

19.

https://zeroemissionsplatform.eu/wp-content/ uploads/ZEP-CCSA-Guidance-Note-for-CO_transport-by-ship-March-2022.pdf

20.

Delta Rhine Corridor. https://www.delta-rhine-corridor.com/ en#milestones

21.

Federal Office for the Environment, Switzerland, https://www.bafu.admin.ch/bafu/en/home/ topics/climate/info-specialists/climate--international-affairs/staatsvertraegeumsetzung-klimauebereinkommen-von-parisartikel6.html

4.0 REGIONAL OVERVIEW

5.0 ANALYSIS

6.0 FACILITIES LIST

Section 4.4 **MENA**

Saudi Arabia 2030 Vision,

sustainable-saudi-vision/

UAE Net Zero 2050,

https://www.vision2030.gov.sa/v2030/a-

https://u.ae/en/information-and-services/

environment-and-energy/climate-change/

theuaesresponsetoclimatechange/uae-net-

Global Status of CCS Report 2022, https://status22.globalccsinstitute.com

<u>zero-2050</u>

3.

Santini G.2023, Hydrogen in the MENA Region, Atlantic Council Report, https://www.atlanticcouncil.org/blogs/ energysource/hydrogen-in-the-mena-regionpriorities-and-steps-forward/

5.

UAE Industrial Strategy, https://u.ae/en/about-the-uae/strategiesinitiatives-and-awards/strategies-plans-andvisions/industry-science-and-technology/theuae-industrial-strategy

6.

KSA Green Initiative, https://www.greeninitiatives.gov.sa/

Saudi Aramco Sustainability Report 2021, https://aramco.com/-/media/downloads/ sustainability-report/saudi-aramcosustainability-report-2021-en.pdf

Alliance for Industrial Decarbonization, https://www.allianceforindustrvdecarbonization org/#About

9.

UAE Industrial Strategy, https://u.ae/en/about-the-uae/strategiesinitiatives-and-awards/federal-governmentsstrategies-and-plans/the-uae-industrial

10.

https://www.thenationalnews.com/gulfnews/2023/01/31/saudi-arabia-pledges-toinclude-carbon-capture-tech-in-any-newpower-plant/#:~:text=Saudi%20Arabia%20 will%20no%20longer,its%20power%20 grid%2C%20he%20said.

11.

ADGM, https://www.adgm.com/media/announcements/ abu-dhabi-to-launch-first-regulated-carboncredit-trading-exchange-and-clearing-house-inthe-world

12.

PIF,

https://www.spa.gov.sa/w1802230?lang=en&ne wsid=2395130

13.

Al Jubail CCUS Industrial Hub, https://www.zawya.com/en/business/energy/ saudi-arabia-to-build-largest-ccs-hub-in-jubailmaohi6k5

14.

SABIC CCUS Project, https://www.sabic.com/en/newsandmedia/ stories/our-world/creating-the-worlds-largestcarbon-capture-and-utilization-plant

15.

ADNOC and 44.01 Pilot Project, https://adnoc.ae/en/news-and-media/pressreleases/2023/adnoc-to-turn-CO_-into-rock

16.

KAUST Cryogenic Pilot Plant, https://robertsgroup.kaust.edu.sa/ccc

17.

Maaden CCUS Projects, https://fugitive-emissions-journal.com/maadenmakes-two-significant-decarbonizationannouncements/

Assessment of Potential CCS Hubs in Northern Egypt, OGCI Report, 2023, https://www.ogci.com/resources

Section 5.1 Value of CCS in a net-zero world

International Energy Agency, https://www.iea.org/commentaries/is-carboncapture-too-expensive

2.

Subraveti et al., 2023, Is Storage (CCS) Really So Expensive? An Analysis of Cascading Costs and CO₂ Emissions Reduction of Industrial CCS Implementation on the Construction of a Bridge, Environmental Science and Technology, https://pubs.acs.org/doi/10.1021/acs.est.2c05724

3.

Ganzer C, Dowell N, 2022 Pathways to net zero for UK power and industry - technologies, emissions, GVA, jobs, conference paper https://papers.ssrn.com/sol3/papers. cfm?abstract_id=4287496

Stabilising atmospheric concentration of carbon dioxide at 450 parts per million.

Section 5.2 Investors taking note of clean ammonia's potential

Russell C, Global LNG volumes hit record high as Europe crowds out poorer Asia, 13 January 2023, Reuters,

https://www.reuters.com/markets/commodities/ global-Ing-volumes-hit-record-high-europecrowds-out-poorer-asia-russell-2023-01-12/#:~:text=EUROPE%20RECORD,million%20 tonnes%20the%20prior%20year

2.

Jordan J, Weaker Q4 prompts 2.1% global bunker hub demand drop in 2022, 30 March 2023, Ship & Bunker, https://shipandbunker.com/news/world/931741sb-market-survey-weaker-q4-prompts-21global-bunker-hub-demand-drop-in-2022

3.

Under Section 45Q of the United States Internal Revenue Code.

Under section 45V of the United States Internal Revenue Code.

5.

Loan Programs Office, Title 17 Clean Energy Financing, 2023, US Department of Energy, https://www.energy.gov/lpo/title-17-cleanenergy-financing

6.

45Q and 45V tax credits will depend on guidance from the US Treasury expected by the end of 2023, including the definition of low-carbon hydrogen and guidance on the calculation of lifecycle emissions.

Section 5.3 CCS business models and trends

European Commission. Poland-EU CCS Interconnector (emitters from the industrial cluster in the area around Gdansk, Poland with storage where available in the North Sea country territories,

https://ec.europa.eu/energy/maps/pci_fiches/ PciFiche_12.9.pdf

2.

Oil and Gas Journal. Eni, Snam to develop offshore Ravenna CCS hub, https://www.ogj.com/energy-transition/ article/14287321/eni-snam-to-develop-offshoreravenna-ccs-hub

PEEL NRE. Peel NRE Reveals Plans For CO Network At Protos In Cheshire, https://protos.co.uk/news/peel-nre-revealsplans-for-CO2-network-at-protos-in-cheshire/

Carbon Aceh. Carbon Aceh Gets Green Light For One Of The World's Biggest Carbon Sequestration Projects, 2022, https://www.carbonaceh.com/press-release-1

5.

Greensand, https://www.projectgreensand.com

ExxonMobil. ExxonMobil announces acquisition of Denbury, https://corporate.exxonmobil.com/news/newsreleases/2023/0713_exxonmobil-announcesacquisition-of-denbury

287 (April):42.

and-storage

and Technology,

2.

Section 5.4 Global transport methods

Al Baroudi H, Awoyomi A, Patchigolla K,

Jonnalagadda K, Anthony EJ. A review

of large-scale CO₂ shipping and marine

emissions management for carbon capture,

utilisation and storage. Appl Energy. 2021;

IEA. CO, Transport and Storage [Internet].

capture-utilisation-and-storage/CO₂-transport-

https://www.iea.org/energy-system/carbon-

Hong WY. A techno-economic review on

emissions future. Carbon Capture Science

carbon capture, utilisation and storage

systems for achieving a net-zero CO₂

https://doi.org/10.1016/j.ccst.2022.100044

IEAGHG. The Status and Challenges of

CO₂ Shipping Infrastructures. 2020. (July)

Pipeline and Hazardouns Materials Administration US. Annual Report Mileage for Hazardous Liquid or Carbon Dioxide Systems,

https://www.phmsa.dot.gov/data-and-statistics/ pipeline/annual-report-mileage-hazardousliquid-or-carbon-dioxide-systems

Larvik Shipping. Larvik Shipping Fleet [Internet]. 2023. https://www.larvik-shipping.no/fleet/

Mitsubishi Heavy Industries. Mitsubishi Shipbuilding Holds Launch Ceremony in Shimonoseki for Demonstration Test Ship for Liquefied CO₂ Transport, https://www.mhi.com/news/230328.html

8.

TGE Marine. CO₂ Carriers receive AIP, https://www.tge-marine.com/CO₂-carriersreceive-aip/

9

Ovcina Mandra J. KR, DSME target largescale LCO₂ carrier development, green fuels. Offshore Energy,

https://www.offshore-energy.biz/kr-dsmetarget-large-scale-ICO2-carrier-development

10.

Northern Lights. Northern Lights JV awards contracts for building of two dedicated CO₂ carriers to Dalian Shipbuilding Industry Co., Ltd.

https://norlights.com/news/northern-lightsawarding-ship-building-contracts/

11.

Altera. Stella Maris CCS What We Do. https://alterainfra.com/what-we-do/ccs

12.

Lloyd's Register. LR awards HHI Design Approval for world's first 40,000cbm LCO₂, https://www.lr.org/en/latest-news/lr-awards-hhidesign-approval-for-worlds-first-40000cbmlcos-carrier/

13.

Mitsui O.S.K. Lines Ltd., Mitsubishi Shipbuilding Co. Ltd. MOL and Mitsubishi Shipbuilding Acquire AiP for LCO₂ Carrier from DNV under Joint Development, https://www.mol.co.jp/en/pr/2022/22099.html

Find out more

The Global CCS Institute is a leading international carbon capture and storage (CCS) think tank. Our more than 200 international members include governments, companies, research bodies and NGOs, all with a commitment to CCS as part of achieving a net-zero future.

Any questions

Get in touch with the institute at info@globalccsinsitute.com or through our website at globalccsinstitute.com/contact

Head office

Level 23, Tower 5, 727 Collins Street, Melbourne VIC 3008 Australia +61 (0)3 8620 7300

Please use the following to reference the report: Global CCS Institute, 2023. The Global Status of CCS: 2023. Australia.

Design by Columns columns.co.uk

Copyright © 2023 Global CCS Institute

The information in this document is supplied by the Global Carbon Capture and Storage Institute Ltd (Global CCS Institute) and is subject to the provisions outlined in this section. The receipt of this document by the persons or entity named at the front of this document or any other recipient (Recipient) evidences acceptance of these provisions. This document is addressed solely to the Recipient and is for their sole review only and may not be provided or disclosed to any other person without the prior written consent of Global CCS Institute. If these provisions are not agreed and accepted by the Recipient, this document and any copies of it must be immediately returned to Global CCS Institute or otherwise destroyed.

This document has been made available to the Recipient for information purposes only and is not intended to be and does not constitute any form of offering document, advice or recommendation. To the maximum extent permitted by law, Global CCS Institute and its affiliates, associates, related bodies corporate, shareholders, officers, employees, partners, representatives, agents, advisers and consultants (each a Relevant Person) expressly disclaim all liability for any loss or damage (including but not limited to for negligence, default or lack of care) for use or reliance on the information in this document or any information which is made available in connection with any further or related enquiries, including any commercial or investment decisions made on the basis of information provided in this document.

This document has been prepared on the basis of publicly available information or other information known to Global CCS Institute at the time this document was compiled and the accuracy of such information has not been independently verified by the Global CCS Institute or any Relevant Person. Global CCS Institute does not guarantee that the information in this publication is accurate or complete and therefore the information in this document must not be relied upon when making commercial, investment or other decisions. Neither the Institute nor any Relevant Persons make any representation or warranty (express or implied) as to the accuracy, sufficiency or completeness of the contents of this document and accept no liability for use or reliance of any information in this document.

This document is based on information available as at the date of this report, unless specified otherwise. The Recipient acknowledges that circumstances may change and the contents of this document may become outdated as a result. Neither Global CCS Institute nor any Relevant Persons will be under any obligation to provide the Recipient with access to any additional information, to update this document or to correct any inaccuracies that may become apparent in this

