JANUARY 18, 2023 | NEPOOL RELIABILITY COMMITTEE | DOUBLETREE HOTEL, WESTBOROUGH, MA

Revision 1

Operational Impact of Extreme Weather Events

Energy Adequacy Study Performed in Collaboration with EPRI

ISO-NE PUBLIC

DIRECTOR, OPERATIONAL PERFORMANCE, TRAINING & INTEGRATION

PRINCIPAL ANALYST, ADVANCED TECHNOLOGY SOLUTIONS

Eamonn Lannoye

Operational Impact of Extreme Weather Events – Energy Adequacy Study

- ISO is working with EPRI to conduct a probabilistic energy adequacy study for the New England region in the operational time frame under extreme weather events
- *Why*: Improve the ISO's and stakeholders' understanding of operational risks under future weather extremes
 - This work is intended to segue into the Energy Adequacy anchor project in Q2 2023: Study results will be used to educate the region on risks so that the region can have informed discussions on risk tolerance, develop a problem statement on energy adequacy, and begin to assess a range of possible solutions
- *How*: Understand stressors and the related failure mechanisms during extreme weather events and then perform risk analysis across multiple scenarios
 - Establish a framework for analysis of risk under extreme weather events
 - The framework should prove useful as climate projections are refined as the resource mix evolves in the future; it will only get better over time as inputs become better defined

ISO-NE PUBLIC

Operational Impact of Extreme Weather Events – Energy Adequacy Study, cont'd

- There are three major steps to this effort
 - Step 1: Weather Modeling (performed by EPRI)
 - Step 2: Risk Screening Model Development and Scenario Generation (performed by EPRI)
 - Step 3: Energy Adequacy Assessments (performed by the ISO)
- This presentation will highlight a preliminary set of extreme events (21-day periods) that the risk screening model has generated as candidates for further study; this set of events provides useful illustrative examples for discussion
 - Further study entails the application of categorical branching methods and scenario generation prior to the performance of energy adequacy assessments in Step 3
- This risk screening model is a coarse measure of system (supply and demand) risk; this model is intended to identify events for further study, not to determine system energy adequacy under specific conditions
 - Energy adequacy assessments in Step 3 will help to quantify system energy adequacy risks under extreme weather events using the outcomes of the Risk Screening Model and Scenario Generation process in Step 2
- Note: This revision includes updated average load and average max load values on slides 25 and 26. Peak load and total energy demand values on slides 35, 37, 39, 41, 43, 46, 48, 50, 52, and 54 have also been updated. Slide 15 is a new addition.

ISO-NE PUBLIC

EVENT SELECTION METHODOLOGY

Overview of Event Selection Methodology

- Objective: Select a set of 21-day periods (<u>events</u>) that appear most stressful (extreme) to the future New England power system in terms of energy availability
 - The initial set of events is based on the output of the risk screening model which determines system risk as aggregated unavailable supply plus exceptional demand (*see* slides no. 10-12)
- Considerations in selecting events
 - Seek a representative set of 21-day events per target year (2027, 2032)
 - Events should include a diverse set of risks; however, diversity is a secondary consideration to vulnerability

ISO-NE PUBLIC

- Select extreme cases representative of similar risks

Following Event Selection, Scenario Trees Will Enable Incorporation of Indirect-Weather Related Uncertainty and Random Outage Realizations

Introduced November RC Meeting

Visual Depiction of Event Selection Methods

ISO-NE PUBLIC

Visual Depiction of Event Selection Methods,

cont.

BRIEF REVIEW OF RISK SCREENING MODEL

Goal of Risk Screening Model

- To search the weather data set and identify discrete (extreme) weather events that are potentially stressful to the New England power system from an availability of energy perspective
- Discrete events will be 21-day periods consisting of weather characteristics that place regional energy supplies at higher levels of risk
 - Multi-day weather events having weather characteristics similar to hurricanes or Nor'easters may be identified by the risk screening model to the extent that they are identified as being impactful to the region's energy supplies
- Risk screening model will quantify the relationship between weather and the power system
 - Direct weather related uncertainty e.g., wind output is a function of wind speed at the site
 - Indirect weather related uncertainty e.g., gas plant fuel supply is a function of heating demand that is a function of weather

ISO-NE PUBLIC

10

11

Risk Screening Model: Search Weather Data Set to Identify Potentially Stressful (Extreme) Events

ISO-NE PUBLIC

Unavailable Supply

- Each resource-specific risk model is evaluated at each interval in the weather data provided and the unavailable capacity is estimated
- Unavailable capacity is aggregated across all resource types in each interval

Exceptional Demand

- Exceptional demand represents demand above a fixed threshold
- Example: demand above 23 GW

Risk Screening Model: Search Weather Data Set to Identify Potentially Stressful (Extreme) Events, cont.

ISO-NE PUBLIC

- System Risk = aggregated unavailable supply + exceptional demand
- Sliding windows applied in order to define extreme events
 - Shift a 21-day window every 7 days

12

 Select tail risk events for each study year

Risk Screening Model Inputs and Outputs

- 2 target years as part of the initial study (2027, 2032)
 - Generation fleet in each target year is based on the set of resources that cleared the most recent forward capacity market auction in addition to state-sponsored resources that are either under contract or have been selected under recent RFP's
 - Demand profiles incorporate ISO's most recent heating and transportation electrification forecasts
- Initial input to the risk screening model is 3,744 events, based on
 - 72 weather years (1950 2021), climate-adjusted according to one climate model (NOAA Geophysical Fluid Dynamics Laboratory, GFDL) and one socio-economic pathway (SSP126) – see appendix slides for more details
 - Each generator is mapped to one of 10 weather stations
- Weather is climate-adjusted according to the GFDL model and SSP126
 - The combination of the GFDL model and SSP126 provides an indicative (median) climate change signal for the near-term; no significant deviations between these models and other models are foreseen between now and target study years
 - Once all five climate models and two socio-economic pathway scenarios are used in the final risk screening model (in progress), there will be a total of 37,440 events screened
- Output of Risk Screening Model is 147 high risk events (top 4% of all events)
 - Model is run in 10-year batches (each batch is one decade since 1950)
 - Process screens top 21 risk periods per batch, ranked based on highest avg. system risk

13

ISO-NE PUBLIC

PRELIMINARY RISK SCREENING MODEL RESULTS

Risk Screening Model Results Are Preliminary, But Illustrative Examples Are Useful

- The objective of this presentation is to walk through the event selection methodology with illustrative examples
- The following slides indicate a preliminary set of potential high-risk events (and clusters of events) based on the modeling currently implemented
- The preliminary events and clusters reflect possible outcomes which may adjust as modeling is complete
 - For example, behind-the-meter PV is not yet fully incorporated into the risk screening model; once fully incorporated this may shift the selected set of events (particularly summer events) and the identified clusters
- Modeling efforts continue and progress will be shared at future meetings

ISO-NE PUBLIC

15

Selection of Highest Risk Events

*Note that these figures are intended only to represent event selection process and are not intended to convey actual results

16

Risk Screening Model Top 10 Events, Ranked by Highest Avg. System Risk, 2027 and 2032 Study Years

	2027 (Top 10 of 147 events)			2032 (Top 10 of 147 events)			
Rank	21-Day Event Start Date	Avg. System Risk (MW)	Rank	21-Day Event Start Date	Avg. System Risk (MW)		
1	Jan 22, 1961	9182	1	Jan 22, 1961	9691		
2	Jan 15, 1961	9000	2	Jan 15, 1961	9636		
3	Jan 01, 1981	8963	3	Jan 07, 1982	9600		
4	Jan 11, 1994	8937	4	Jan 01, 1981	9577		
5	Jan 07, 1982	8877	5	Jan 11, 1994	9437		
6	Jan 15, 1971	8826	6	Jan 15, 1971	9405		
7	Jan 05, 2004	8714	7	Jan 05, 2004	9315		
8	Jan 12, 2004	8555	8	Jan 12, 2004	9162		
9	Feb 02, 1979	8546	9	Jan 04, 1994	8972		
10	Jan 04, 1994	8444	10	Feb 02, 1979	8959		
14	1 st Summer Event, Jul 05, 2010	8315	19	1 st Summer Event, Jul 28, 1988	8572		
			E PUBLIC				

Analysis of Risk Screening Model Top 10 Events Indicates Some Similarities Between 2027 and 2032

2027 (Top 10 of 147 events)			Analysis of Top 10 Events	2032 (Top 10 of 147 events)			
Rank	21-Day Event Start Date	Avg. System Risk (MW)	Based on the highest average system	Rank	21-Day Event Start Date	Avg. System Risk (MW)	
1	Jan 22, 1961	9182	risk (IVIVVs):	1	Jan 22, 1961	9691	
2	Jan 15, 1961	9000	 Top 10 events in both study years consistently demonstrate system 	2	Jan 15, 1961	9639	
3	Jan 01, 1981	8963	risks associated with winter cold weather		Jan 07, 1982	9600	
4	Jan 11, 1994	8937			Jan 01, 1981	9577	
5	Jan 07, 1982	8877	 System risk increases slightly from 2027 to 2032 	5	Jan 11, 1994	9437	
6	Jan 15, 1971	8826	• Significant overlap exists within	6	Jan 15, 1971	9405	
7	Jan 05, 2004	8714	events in target study years	7	Jan 05, 2004	9315	
8	Jan 12, 2004	8555	(see color-snaded pairs in each table)		Jan 12, 2004	9162	
9	Feb 02, 1979	8546	• All of the Top 10 events overlap	9	Jan 4, 1994	8972	
10	Jan 04, 1994	8444	across target study years, though	10	Feb 02, 1979	8959	
14	1 st Summer Event, Jul 05, 2010	8315	System fisk varies	19	1 st Summer Event, Jul 28, 1988	8572	
			ISO-NE PUBLIC			18	

Top 10 Lists Highlight Winter Events, but Summer Events are Prevalent in Risk Screening Model Results

Risk Screening Model Results Do Not Directly Reveal Characteristics of Specific Events

ISO-NE PUBLIC

- As an example, the figure on the left depicts 2027 Risk Screening Model results by mean 100 meter wind speed and total 21-day energy demand
- It is challenging to select representative 21-day events directly from raw risk screening results

20

 \checkmark

GROUPING OF SIMILAR EVENTS

Reduction Techniques Facilitate Grouping of Events With Similar Characteristics

*Note that these figures are intended only to represent event selection process and are not intended to convey actual results

ISO-NE PUBLIC

22

Several Options For Grouping Similar Events Were Considered, Clustering Method Has Been Proposed

Approach	Scenario Selection Policy (e.g. Top 3 winter, Top 3 summer)	Clustering (K-means/ K-medoids)	OptEx D-Opt	OptEx S-Opt	Unsupervised Learning
<i>Advantages</i>	Simplified approach following pre-established rules	Commonly implemented approach, allows from selection from group	Ensures 'most diverse set' of scenarios across all dimensions	Ensures selection of 'least alike' scenarios across all dimensions	Not exposed to bias
Disadvantages	Rulemaking significantly exposed to confirmation bias risk	Dimension selection exposed to confirmation bias	Does not all Exposed selection	ow for grouping; to dimension conf. bias risk	Insufficient training data and low transparency

ISO-NE PUBLIC

Description of Clustering Method

- Clustering by the K-means/K-medoids approach is a machine-learning technique that involves the grouping of data points
- A clustering algorithm is used to group similar 21-day events
- Factors used to differentiate events
 - System Factors
 - Average system risk across event
 - Maximum system risk
 - Total load
 - Common Mode Factors
 - Average temperature
 - Extreme temperature
 - Renewable Factors
 - Average irradiance
 - Number of dark days and/or calm days
 - Wind speed
 - Precipitation (including snow) were evaluated but later excluded as they reinforced load and temperature dimensions in Principal Component Analysis (PCA)
- The outcome of the clustering process is five "clusters" (or groups) of events for each study year, each with unique operational challenges

Summary of Clustering Outcomes, Study Year 2027

Cluster Name	# of Events in Cluster (of 147)	Brief Representative Description of Events in Cluster	Avg. Temp (F)	Avg. System Risk (MW)	% of Days with Extreme Cold/Hot Temps (<10 F, or >85 F)	% of Days with Low Wind (<4 m/s)	% of Days with Low Irr (<200 W/m ²)	Avg. Load (GW)	Avg. Max Load (GW)
Winter 1 (W1)	16	Long-Duration Extreme Cold Wave(s), Low Winds and Very Low Solar	17.3	8,623	30%	61%	99%	16.3	21.1
Winter 2 (W2)	38	Short-Duration Extreme Cold Snap(s), Low Winds and Very Low Solar	20.6	7,717	16%	66%	100%	15.9	20.8
Summer 1 (S1)	35	Long-Duration Heat Wave, Highest Summer Loads, Very Low Winds	76.4	7,894	1%	96%	15%	16.8	25.7
Summer 2 (S2)	51	Sustained High Temps, High Summer Loads, Very Low Winds and Low Solar	74.8	7,554	1%	96%	15%	15.9	24.4
Summer 3 (S3)	7	Moderate Summer Temps, Avg. Summer Loads, Very Low Winds and Very Low Solar	71.3	7,477	0%	99%	22%	14.4	21.7
*Bold and colored (blue or red) text indicates the cluster in which each variable is the largest value within the same season (winter or summer)									

Summary of Clustering Outcomes, Study Year 2032

Cluster Name	# of Events in Cluster (of 147)	Brief Representative Description of Events in Cluster	Avg. Temp (F)	Avg. System Risk (MW)	% of Days with Extreme Cold/Hot Temps (<10 F, or >85 F)	% of Days with Low Wind (<4 m/s)	% of Days with Low Irr (<200 W/m²)	Avg. Load (GW)	Avg. Max Load (GW)
Winter 1 (W1)	10	Long-Duration Extreme Cold Wave(s), Low Winds and Very Low Solar	16.6	9,376	32%	60%	100%	18.0	23.64
Winter 2 (W2)	27	Short-Duration Extreme Cold Snap(s), Low Winds and Very Low Solar	20.2	8,365	22%	62%	100%	17.5	23.56
Winter 3 (W3)	26	Consistently Low Winter Temps, Low Winds and Very Low Solar	21.7	7,893	7%	68%	100%	17.2	22.9
Summer 1 (S1)	47	Long-Duration Heat Wave, Highest Summer Loads, Very Low Winds	76.5	7,952	2%	95%	16%	17.1	26.1
Summer 2 (S2)	37	Consistently High Summer Temps, Very Low Wind and Low Solar	74.7	7,684	0%	98%	27%	16.2	24.7
*Bold and colored (blue or red) text indicates the cluster in which each variable is the largest value within the same season (winter or summer)									

Visual Depiction of 2027 Clustering Outcomes

*The visual depiction on this slide includes <u>only two variables</u>, total 21-day energy demand (MWh) and average wind speed at 100 meters (m/s). Notably, the clustering algorithm takes many additional variables into consideration. **This exhibit is intended only to visually reinforce the clustering methodology.**

ISO-NE PUBLIC

27

SELECTION OF EVENTS FROM CLUSTERS

Following Clustering of Events, Representative Events Must Be Selected for Further Study

Note that these figures are intended only to represent event selection process and are not intended to convey actual results

ISO-NE PUBLIC

Several Options for Selecting Events From a Cluster Have Been Considered

- Options to select an event included
 - Most representative event (at the medoid of each cluster)
 - Events with most system risk (average, maximums, etc.)
- The table below displays results of preliminary event selection based on highest avg. system risk

2027 Target Year				2032 Target Year				
Cluster	Selected 21-Day Event Start Date	Avg. System Risk (MW)	Event Rank (of 147)	Cluster	Selected 21-Day Event Start Date	Avg. System Risk (MW)	Event Rank (of 147)	
W1*	1/22/1961	9,182	1	W1*	1/22/1961	9,691	1	
W2	1/12/2009	8,161	21	W2	1/8/1971	8,834	9	
S1	7/5/2010	8,314	14	W3	1/15/2011	8,389	27	
S2*	8/17/1973	7,916	41	S1	7/28/1988	8,572	19	
S 3	7/28/2008	7,598	88	S2*	8/17/1973	8,332	53	
* Two Instances of Overlap Between Target Years (1/22/1961 and 8/17/1973)								

ISO-NE PUBLIC

Clustering Approach Appears Valid Based on Review of Historical Periods

- As depicted on the following slides, reasonable coverage of historical events has resulted from the clustering methodology that has been employed
- ISO and EPRI continue to evaluate the selection of additional events within each cluster (i.e., top 2 highest average system risks events) and/or the utilization of other methods (i.e., other than highest average system risk) for the selection of events
 - Any suggested modifications to the current approach will be discussed at future meetings

ISO-NE PUBLIC

31

Comparison of Selected Events to Top 10 Coldest Historical Periods – New England Weighted (HDDs)

NE Weighted Avg.	Coldest Day	Coldest 3-Day	Coldest 5-Day	Coldest 10-Day	Coldest 21-Day
1	70.6 (1957-01-15)	63.7 (1968-01-09)	62.2 (1979-02-12)	59.5 (1979-02-15)	52.3 (1961-01-29)
2	66.8 (1968-01-08)	62.9 (1957-01-15)	61.7 (1968-01-10)	55.6 (1961-01-24)	52.2 (1982-01-18)
3	65.4 (2016-02-14)	62.5 (1979-02-11)	60.9 (1957-01-16)	55.6 (2018-01-03)	51.7 (1979-02-10)
4	65.4 (1981-01-04)	62.5 (2004-01-15)	59.4 (1971-01-18)	55.6 (1981-01-09)	51.6 (1981-01-04)
5	65.2 (1968-01-09)	61.1 (1955-12-21)	58.7 (2017-12-30)	55.1 (1968-01-07)	51.4 (2004-01-17)
6	65.2 (1962-12-31)	60.8 (1981-01-04)	57.4 (1981-01-11)	54.8 (1982-01-15)	50.1 (1968-01-08)
7	64.4 (1994-01-16)	60.7 (1971-01-19)	57.2 (1965-01-17)	54.5 (2004-01-12)	49.8 (1957-01-09)
8	64.1 (1982-01-18)	60.3 (1965-01-16)	57.2 (1961-01-23)	54.4 (1957-01-16)	49.8 (1970-01-14)
9	63.9 (1968-12-26)	60.1 (1979-02-14)	56.7 (1979-02-17)	53.9 (1971-01-17)	49.7 (2015-02-10)
10	63.7 (1965-01-15)	59.7 (1994-01-20)	56.7 (1961-02-01)	53.4 (2000-01-19)	49.4 (1994-01-17)
Selected as	a Representative Eve	ent for 2032	Selected as a R	epresentative Event f	or 2027 & 2032

Description: Values are based on daily mean temperatures. 3, 5, 10, and 21-days are means for the period. Dates are mid-points of events.

ISO-NE PUBLIC

Comparison of Selected Events to Top 10 Hottest Historical Periods – New England Weighted (CDDs)

NE Weighted Avg.	Hottest Day	Hottest 3-Day	Hottest 5-Day	Hottest 10-Day	Hottest 21-Day
1	23.3 (2011-07-22)	19.9 (1991-07-20)	18.3 (2013-07-18)	16.1 (1988-08-11)	14.5 (1988-08-06)
2	22.2 (1975-08-02)	19.7 (2011-07-22)	18.1 (1991-07-20)	15.4 (2020-07-24)	13.7 (2013-07-13)
3	21.8 (2010-07-06)	19.0 (2013-07-19)	17.7 (1988-08-13	15.3 (2013-07-19)	13.6 (2020-07-28)
4	21.2 (2001-08-09)	18.9 (2001-08-08)	17.5 (2001-08-08)	15.2 (2010-07-09)	13.3 (2010-07-14)
5	21.1 (1999-07-05)	18.9 (1975-08-02)	17.2 (2002-08-16)	14.9 (1991-07-21)	12.6 (2002-08-08)
6	21.0 (2006-08-02)	18.7 (2002-07-03)	17.1 (2010-07-07)	14.9 (2002-08-15)	12.4 (2016-07-22)
7	20.8 (2019-07-21)	18.7 (2010-07-06)	17.0 (2011-07-21)	14.4 (1953-09-02)	12.2 (2006-07-24)
8	20.7 (2013-07-19)	18.6 (2006-08-02)	16.6 (2016-08-13)	14.3 (1952-07-19)	12.1 (2011-07-14)
9	20.5 (1991-07-21)	18.3 (1982-07-18)	16.6 (1977-07-19)	14.1 (2016-07-26)	11.9 (2019-07-12)
10	20.1 (1991-07-20)	18.0 (1988-08-13)	16.6 (1993-07-09)	14.0 (2006-07-30)	11.8 (2018-08-02)
Selected as	a Representative Eve	nt for 2032	Selected as	a Representative Eve	nt for 2027

Description: Values are based on daily mean temperatures. 3, 5, 10, and 21-days are means for the period. Dates are mid-points of events.

ISO-NE PUBLIC

REVIEW OF SELECTED EVENTS, 2027

Events selected based on highest average system risk in each cluster

Representative Event, Winter Cluster 1, 2027

Long-Duration Cold Wave Coincident With Low Avg. Winds and Solar

Representative Event, Winter Cluster 1, 2027

Long-Duration Cold Wave Coincident With Low Avg. Winds and Solar

Representative Event, Winter Cluster 2, 2027

Short-Duration Cold Snaps With Low Avg. Winds and Very Low Avg. Solar

Representative Event, Winter Cluster 2, 2027

Short-Duration Cold Snaps With Low Avg. Winds and Very Low Avg. Solar

Representative Event, Summer Cluster 1, 2027

Long Duration Heat Wave Coincident with Very Low Avg. Winds

Event Description

Cluster: Summer 1 (35 of 147 events)

Event Ranking: 14 (of 147)

Date: Jul 5 – Jul 26, 2010

Avg. System Risk: 8,314 MW

Max System Risk: 19,342 MW

Peak Load: 27,350 MW

Total Energy Demand: 8.55 TWh

Min/Mean/Max (°F): 66.2/77.5/96.6

Mean 100m Wind Speed (m/s): 4.4

Mean Irradiance (W/m²): 239.9

Representative Event, Summer Cluster 1, 2027

Long Duration Heat Wave Coincident with Very Low Avg. Winds

Representative Event, Summer Cluster 2, 2027

Sustained High Temps Coincident with Very Low Avg. Winds and Solar

events)

3.9

41

Representative Event, Summer Cluster 2, 2027

Sustained High Temps Coincident with Very Low Avg. Winds and Solar

Representative Event, Summer Cluster 3, 2027

Moderate Summer Temps Coincident with Very Low Avg. Solar and Wind Drought

43

Representative Event, Summer Cluster 3, 2027

Moderate Summer Temps Coincident with Very Low Avg. Solar and Wind Drought

Risk Summary		ary	System Risk – Top Risk Factors* (*not all risk factors are included in plot below, only most significant risks)
Top 3 Risks	Total Risk	Impacted Resources	System Risk, Top Risk Factors 2027 Event S3, Jul. 28, 2008 - Aug. 18, 2008
Low Wind (<6 m/s)	62%	Wind Offshore (44%) Wind Onshore (18%)	Exterie righ remp Low wird Wid remp Wid remp 2000
Mid Wind (6-12 m/s)	10%	Wind Offshore (9%) Wind Onshore (1%)	
Low Temp (up to ~77F)	7%	CC (6%) GT (1%)	And A constrained by a

REVIEW OF SELECTED EVENTS, 2032

Events selected based on highest average system risk in each cluster

Representative Event, Winter Cluster 1, 2032

Long-Duration Cold Wave Coincident With Low Avg. Winds and Solar

Event Description Key Weather Variables Cluster: Winter 1 (includes 10 of Climate Model-Adjusted New England Weighted Avg. Weather Variables 2032 Event W1, Jan. 22, 1961 - Feb. 12, 1961 147 events) snow ---- Wind Speed - 10m --- Wind Speed - 100m --- Irr Event Ranking: 1 (of 147 events) 1000 Historical Relevance: The actual weather during this stretch was the coldest 21-day 90 Date: Jan 22 – Feb 12, 1961 900 period since 1950; includes two of top 10 coldest 5-day periods since 1950. The 80 2032 version of this period is slightly warmer than the 2027 version, with loads and 800 Avg. System Risk: 9,691 MW energy usage are higher in the 2032 event than in the 2027 event. í. 700 Max System Risk: 23,215 MW Peak Load: 22,959 MW Total Energy Demand: 8.93 TWh Min/Mean/Max (°F): -9.2/17.6/47.0 200 Mean 100m Wind Speed (m/s): 6.0 Mean Irradiance (W/m²): 118.8

Representative Event, Winter Cluster 1, 2032

Long-Duration Cold Wave Coincident With Low Avg. Winds and Solar

Representative Event, Winter Cluster 2, 2032

Short Duration Cold Snap Coincident with Low Avg. Winds and Very Low Avg. Solar

Representative Event, Winter Cluster 2, 2032

Short Duration Cold Snap Coincident with Low Avg. Winds and Very Low Avg. Solar

Representative Event, Winter Cluster 3, 2032

Consistently Low Winter Temps Coincident With Low Avg. Winds and Very Low Avg. Solar

Representative Event, Winter Cluster 3, 2032

Consistently Low Winter Temps Coincident With Low Avg. Winds and Very Low Avg. Solar

Representative Event, Summer Cluster 1, 2032

Long Duration Heat Wave Coincident with Very Low Avg. Winds

Weather Conditions Event Description Climate Model-Adjusted New England Weighted Avg. Weather Variables Cluster: Summer 1 (46 of 147 2032 Event S1, Jul. 28, 1988 - Aug. 18, 1988 events) ---- Wind Speed - 10m ---- Wind Speed - 100m ---- Irr Temp 1000 Event Ranking: 19 (of 147) 90 Date: Jul 28 – Aug 18, 1988 Avg. System Risk: 8,572 MW 700 Temperature (°F), Wind Speed (m/s) Max System Risk: 16,755 MW 60 600 Peak Load: 25,493 MW 50 Total Energy Demand: 9.29 TWh 40 400 Min/Mean/Max (°F): 30 Historical Relevance: This 21-day period was one of the warmest since 1950; 300 65.7/79.8/93.7 included in the top 10 warmest 3, 5, 10, and 21-day periods since 1950. Period is characterized by very high loads and consistently low wind over a majority of 21-20 200 Mean 100m Wind Speed (m/s): day period. 4.7 10 100 Mean Irradiance (W/m²): 238.7 **ISO-NE PUBLIC** 52

Representative Event, Summer Cluster 1, 2032

Long Duration Heat Wave Coincident with Very Low Avg. Winds

Representative Event, Summer Cluster 2, 2032

Sustained High Temps Coincident with Very Low Avg. Winds and Solar

54

Representative Event, Summer Cluster 2, 2032

Sustained High Temps Coincident with Very Low Avg. Winds and Solar

HISTORICAL EVENTS OF INTEREST

Winter 2017/18 Cold Snap – Summary of Conditions and Risks

Blizzard of 1978 – Summary of Conditions and Risks

Next Steps

- Incorporate feedback into final selection of events for further study
- Perform categorical branching to selected events (Part of Step 2)
 - Add scenarios to events LNG, fuel inventory, imports, etc.
- Perform outage draw (Part of Step 2)
 - To incorporate random forced and maintenance outages
- Perform energy adequacy assessment (Step 3) using 21-day energy assessment tool

ISO-NE PUBLIC

59

Preliminary Stakeholder Schedule

*Schedule is subject to change based on modeling progress

Stakeholder Committee and Date	Scheduled Project Milestone
Reliability Committee February 15, 2022	Initial presentation
Reliability Committee March 15, 2022	Summary of EPRI's historical weather analysis deliverables and discussion of macro assumptions
Reliability Committee May 17, 2022	Share results of Step 1 (Extreme Weather Modeling) report. Review and discuss Step 2 (Risk Model Development and Scenario Generation) activities
Reliability Committee July 19, 2022	Review progress on Step 2 activities
Reliability Committee September 20, 2022	Continue to gather feedback with respect to Step 2 activities
Reliability Committee November 16, 2022	Continue to gather feedback with respect to Step 2 activities
Reliability Committee January 18, 2023	Discuss preliminary results of Step 2 Risk Screening Model
Reliability Committee February 14, 2023	Continued discussion of Step 2 Risk Screening Model results; review categorical branching methodology
Reliability Committee March 14, 2023	Discuss preliminary results of Step 3 (pending modeling progress)

Questions

ISO-NE PUBLIC

61

APPENDIX

Additional Reference Slides

Latest Generation CMIP6 Scenario Results Are Used in this Study

New scenarios: updated emission pathways explore a wider range of possible future outcomes than CMIP5

- For this study, EPRI is using two Intergovernmental Panel of Climate Change (IPCC)-selected scenarios
 - SSP1-1.9 compatible with 1.5°C warming
 - SSP1-2.6 ambitious policy (global CO2 negative by 2075) –
 "lower warming scenario"
 - SSP2-4.5 moderate policy pathway
 - SSP3-7.0 NEW no-policy baseline "higher warming scenario"
 - SSP5-8.5 even higher emissions than CMIP5 RCP8.5

New models: 103 distinct climate models from 49 institutions

(vs 59 CMIP5 models)

- EPRI has selected five reputable GCMs that span a range of climate sensitivities*
 - NOAA Geophysical Fluid Dynamics Laboratory: GFDL-ESM4 2.7°C
 - Max Planck Institute (Germany): MPI-ESM1 3.0°C
 - Meteorological Research Institute (Japan): MRI-ESM2 3.1°C
 - Institut Pierre-Simon Laplace (France): IPSL-CM6A 4.6°C
 - UK Met Office: UKESM1 5.4°C

*Equilibrium Climate Sensitivity value (shown for each model above) summarizes a model's warming response; it reports the total amount of warming from a doubling of preindustrial CO2 concentrations. The 2021 IPCC WGI AR6 best estimate is 3°C, with a very likely range of 2 to 5°C (5-95% range). CMIP6 multimodel mean is 3.7°C (SD 1.1).

63

Introduced May 2022 RC Meeting

Global Climate Models Translate Greenhouse Introduced May **Gas Scenarios To Climate Outcomes**

2050

0

2015

SSP5-8.5

SSP1-2.6

2100

 \Box Global Climate Model (GCM) \Box Gridded Projection Data

2022 RC Meeting

64

a) Global surface temperature change relative to 1850-1900

Figures: IPCC WGI AR6 Report (2021) SPM.4 (left) and SPM.8 (bottom right), GCM schematic by Jablonowski & Limon (2020), North America CMIP6 ensemble for 2C average warming (IPCC 2021)

ISO-NE PUBLIC