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The Potential Impact Radius (PIR) Formula

• A formula developed by C-FER (Stephens 2001) for estimating the extent of the 

significant thermal radiation hazard zone resulting from an ignited rupture of a 

natural gas pipeline

− The underlying models idealize a time-varying large-scale fire as a steady-state, ground-

level, point-source heat emitter for the purpose of hazard zone estimation

− A concerted effort was made to develop and describe a modelling approach that would

• be as simple as possible (to enhance understanding and promote acceptance), but also

• incorporate factors the reduce conservatism inherent in the adopted modelling approach

Response to Comments 2



www.cfertech.com

r

Heat Intensity, I

E

Ground-level
hazard area

• Effective release rate, Qeff (kg/s)

−  = release rate decay factor

− Cd = discharge coefficient

− d = pipeline diameter

− p = internal pressure

− /a0 = flow factor/sonic velocity

• Emissive power, E (kW)

− Hc = heat of combustion

− g = emissivity factor

• Heat intensity, I (kW/m2)

− r = horizontal distance

−  = efficiency factor

Overview of the Model Components
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• Effective release rate, Qeff (kg/s)

−  = release rate decay factor

− Cd = discharge coefficient

− d = pipeline diameter

− p = internal pressure

− /a0 = flow factor/sonic velocity

• Emissive power, E (kW)

− Hc = heat of combustion

− g = emissivity factor

• Heat intensity, I (kW/m2)

− r = horizontal distance

−  = efficiency factor

PIR Model Components Subject to Concern
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Effective Sustained Release Rate, Qeff

• Comparisons to transient release rates – TNO (1982) rupture blowdown model*
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NPS 30 @ 950 psi *Outflow based on an approximation to a numerical solution (±5%):
- Consistent with laws governing conservation of mass and momentum
- Assumes guillotine line break with no flow throttling from pipe end effects
- Accounts for product density, temperature and non-ideal gas behaviour
- Accounts for friction drag caused by roughness of inner pipe wall

Qeff
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Effective Sustained Release Rate
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• Comparisons to transient release rates - TNO (1982) rupture blowdown model

All lines @ 950 psi

For large diameter lines  Qeff ≈ outflow rate at 30 seconds
*conservative estimate of rate at 30 seconds for smaller lines
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Efficiency Factor, 

• The efficiency factor incorporated in the Technica (1988) fire model as adopted by C-FER 

addresses conservatisms inherent in the simplified form of the model used to estimate 

radiation intensity as a function of horizontal distance from an elevated fire source

• As discussed by Baker/C-FER in a report commissioned by PHMSA (Baker/C-FER 2005),

the factor can be shown to effectively account for the following:

− The effect of high-speed jetting on emmisivity –— a knock-down factor on the order of 0.75

[Chamberlain (1987) and Cook et al. (1987)]

− The effect of atmospheric absorption on radiant heat reaching receptors –— a transmissivity factor

on the order of 0.7 [Bagster and Pitblando (1989)]

− The effect of fire geometry and flame opacity on the effective view factor –— a view factor adjustment

on the order of 0.65 [Cook et al. (1987)]

• Efficiency factor,  = 0.75 × 0.7 × 0.65 = 0.34   0.35  Technica factor
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Applicability of Fire Model to Real Rupture Fires

• Models underlying the PIR formula are a defensible basis for estimating radiation intensity 

from a crater fire associated with near-immediate ignition as a function of horizontal distance

• A crater fire develops when opposing gas jets impinge upon one another and the crater walls 

redirect flow upwards, effectively creating a vertically oriented flame

• For such a vertical flame, the hazard zone is circular and centered on break point

• What about a rupture resulting in directed jets?

− If opposing pipe ends are significantly misaligned, impingement of opposing jets does not occur,

jets are still directed upwards by crater walls but two distinct jet flames can develop

• For directed jets, the hazard zone is more elliptical

• Total hazard area is comparable to that of crater fire, but generally width is reduced and length is increased
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Heat Intensity Threshold, Ith

• Adopted heat intensity threshold is 5,000 Btu/hr/ft2

− Impact on people

• A 1% chance of lethality for individuals subject to approximately 30 seconds of sustained exposure

– Based on a widely recognized dose-response relationship (i.e. a lethality probit function)

• Basis for 30 second reference exposure time

– Individuals assumed to pause for 5 s then travel at 5 mph (2.5 m/s) and find shelter within 200 ft (60 m)

» International precedent (BS PD 8010-3:2009) for 2.5 m/s travel speed and sheltered within 50 to 75 m

− Impact on property

• Highly unlikely that wooden structures will ignite and burn in the event of extended exposure

– Adopted heat intensity threshold requires about 20 minutes of exposure to result in piloted ignition

(no potential for spontaneous ignition) based on widely recognized dose-response relationship

• Implications for people indoors — wood-framed dwelling will afford indefinite protection to occupants
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Implications of Adopted Heat Intensity 
Threshold that Defines Extent of PIR

• It does delineate

− the area within which fatal injury is a significant possibility

− the area within which wood-framed dwelling destruction is possible

• It does not represent

− the safe distance beyond which people and property are likely to be minimally affected

− the perimeter of the emergency response planning zone or the safe approach distance

• Implications for validation by evaluation of historical incidents

− It does not delineate the extent of the ‘burn zone’ (due to lower heat intensity required to
ignite some vegetation and the potential for fire spread)

− However, the burn zone is often the only available basis for the evaluation of model accuracy
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Original Model Validation –
Comparison of Burn Zones

• From GRI Report (Stephens 2001)
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Other Validation Effort – Safety Risk Focused

• A set of safety-related failure consequence analysis results were compared to those 

obtained from state-of-the-art consequence modelling (Rothwell and Stephens 2006)

• The study compared results obtained from the C-FER models, using an adaptation of the models 

underpinning the PIR formula, against those obtained using PIPESAFE, a proprietary pipeline risk 

analysis software tool initial developed under a joint industry project, now maintained by DNV UK

− PIPESAFE contains a suite of interlinked consequence models specifically developed for gas transmission pipelines 

that have been validated by tests at scales up to 914 mm OD and 76 km in length

− PIPESAFE is capable of taking into account many factors reflecting the attributes of the pipeline, its surroundings and 

contents, the nature of the failure, the meteorological conditions, and the presence and behaviour of potential 

receptors (see Acton et al. 2002)
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Comparison of C-FER Model to PIPESAFE

• Individual risk 
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Results from C-FER model plot to the right 
of the unity line (i.e. dashed red line) 
indicating conservatism compared to 
PIPESAFE results
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Comparison of C-FER Model to PIPESAFE

• Societal risk
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Summary

• C-FER’s position on the current PIR formula:

− The models used and assumptions that underpin the PIR formula are a reasonable and 

defensible basis for hazard zone estimation

− The predictive capability of the PIR formula as currently defined is considered fit for 

general purpose consequence screening

• The development focus was to delineate the likely extent of the fatality and property 

destruction zone for typically populated and developed areas

− The PIR as currently defined

• Is not be interpreted to represent the distance beyond which no impact on people or

property would be expected
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Danville, KY, 2019

Response to Comments 17

NPS 30 @ 926 psi
(MAOP 935 psi)

Residence of fatally 
injured person

Residence of 
rescued couple

Comments
- Residence of deceased and all 
destroyed buildings fall within PIR
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Sissonville, WV, 2012
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NPS 20 @ 929 psi
(MAOP 1,000 psi)

Comments
- Area enclosed by PIR (red circle)
comparable to area of burnt ground
(yellow outline)
- Slight axial burn zone extension
attributed to directional jetting
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San Bruno, CA, 2010
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NPS 30 @ 375 psi
(MAOP 400 psi)

Comments
- extended distance to extent of building 
destruction and damage likely due to wind 
driven fire spread
- fire suppression was significantly delayed
(water mains damaged; information suggests no 
water available for firefighting for about 1 hour)
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Carlsbad, NM, 2000
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NPS 30 @ 675 psi
(MAOP 837 psi)

Comments
- Circumstances and specifics unclear from report 
narrative
- Causalities possibly sleeping unsheltered at camp
site approximately 675 ft from crater (PIR = 599 ft)
- Fatality beyond PIR potentially attributed to slow
reaction time and thereby extended exposure
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