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S1 Treatment of "Unknown" Pipeline Emission Sources

In the case of some emission sources, we could not definitively determine whether they were from

gathering pipelines or transmission pipelines. Although a conservative estimate for a gathering

pipeline emission factor would include none of these ambiguous sources (which is the method we

follow for our main estimates), it is likely that some of these sources are in fact from gathering

pipelines.

To infer whether one of these "unknown" pipeline emission sources is from a gathering or

transmission pipeline, we use the activity factors (defined as sources per unit distance of pipeline)

for gathering and transmission lines. These activity factors differ from campaign to campaign, and

are summarized in Table S1.

If we had no way of discerning whether a particular emission source was from a gathering or

transmission line, we might estimate that with probability 0.5 it is gathering and with probability

0.5 it is transmission. However, we can use the activity factors to make a more informed estimate.

For a particular campaign, let αg and αt be the activity factors for gathering and transmission lines.

Then for an "unknown" pipeline source, we say that with probability αg
αg+αt

it is gathering and with

αt
αg+αt

it is transmission.

To build an interval of uncertainty, we run a simulation. For each campaign, we collect all

"unknown" pipeline emission sources. With probability αg
αg+αt

, we (independently) select each

"unknown" pipeline emission source as gathering. For those that we select as gathering, we add

their emission rates together. We run this process 10,000 times and select the 2.5th and 97.5th

percentiles as our interval. For the four campaigns, ordered chronologically, these intervals are

0.1-0.3, 0.1-0.2, 0.1-0.3, and 0.4-0.4 Mg y−1 km−1.
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S2 Linear Distance of Gathering Pipelines

Our method for estimating an emission factor for natural gas gathering pipelines involves divid-

ing aggregate gathering pipeline emissions in a study region by the linear distance of gathering

pipelines in the study region. To calculate the latter value, we acquired GIS shapefiles of pipeline

location and metadata from Enverus Drillinginfo and Enverus Prism in April 2022. Using ArcGIS

Pro, we crop the pipeline layer to the particular study region (either “Full" or “no ≥ 3"; recall that

"no ≥ 3,nd > 1" is the same region as "no ≥ 3," just with different emissions values). We then

calculate the geodesic length of the resulting geometries, export the table, and sum the values of

the “operational" (Drillinginfo) or "in service" (Prism) natural gas gathering pipeline (or pipeline

fragment) lengths. (Compare this to EPA’s definition of gathering pipelines: "Onshore petroleum

and natural gas gathering and boosting means gathering pipelines and other equipment used to

collect petroleum and/or natural gas from onshore production gas or oil wells and used to com-

press, dehydrate, sweeten, or transport the petroleum and/or natural gas to a natural gas processing

facility, a natural gas transmission pipeline or to a natural gas distribution pipeline." Note that

the EPA definition includes multi-phase pipelines transporting co-mingled oil and gas production

from wellheads to tank batteries, but the Enverus definition does not seem to. In this paper, it is

reasonable to exclude these co-mingled product pipelines due to their relative rarity.) The relevant

uncertainty quantification is discussed in Section S4.1.

S3



S3 Minimum Threshold of Overflights

S3.1 Notation

As a convention, we define an emission source as a collection of plumes located within a 150

m radius, the approximate length of a well pad. The persistence-adjusted emission rate from each

source i is calculated as qi =
1
no

∑
nd
j=1 q j, where no is the number of overflights of the source (defined

as the number of days the source was flown over), nd is the number of days non-zero emissions

were detected from the source (so necessarily no ≥ nd), and q j is the emission rate associated with

the jth overflight of the source (for j ∈ {1, ...,no}). When there are two or more observations

collected on the same day, q j is the mean of all the detections on that day. The quantity nd/no is

defined as the persistence of the source.

S3.2 Overflight Analysis

To estimate aggregate emissions from gathering pipelines, we use all measured sources. Doing so

produces an unbiased estimate of aggregate measurable emissions: if qi is the actual emission rate

from asset i and q̂i is our estimate of its emission rate, we know E[q̂i] = qi, and hence E[∑i q̂i] =

∑iE[q̂i] = ∑i qi, as desired. Despite this, we wish to further explore the dataset to maintain that the

emissions observations are consistent in regions of high and low coverage.

For our analyses of individual sources and their properties, we choose to not use all sources.

For values with low no, we find a positive persistence bias. Thus, we select a threshold of no ≥ 3,

which allows for reasonable convergence in persistence while also preserving sufficient data. See

Figure S2.

Cusworth et al. 2021 also used the threshold of no ≥ 3, justifying it as the minimum number

of overflights to be able to confidently capture the persistence of a source [1]. That is, a 25%

persistent source would be detected more than half the time, or 1− (1−0.25)3 > 0.5.
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S4 Uncertainty Quantification

S4.1 Linear Distance of Gathering Pipelines

In calculating the linear distance of gathering pipelines in the study region, there are two potential

sources of uncertainty that we address.

First, there is potential uncertainty in the quality and representativeness of the infrastructure

data. Indeed, this is the case: Drillinginfo and Prism are separate commercial databases of oilfield

metadata provided by a single commercial aggregator, Enverus; however, further analysis reveals

that the two datasets (at least in the Permian Basin) are not homogenous with respect to pipeline

locations and distances. For uncertainty bounds on pipeline distance, we adopt the following

method. For a particular study region, let dDI and dP be the linear distance of natural gas gathering

pipelines calculated from Drillinginfo and Prism data. Then our estimate with uncertainty bounds

(we take this as 1 standard deviation in each direction) is given by

d̂ =
dDI +dP

2
± |dDI −dP|

2
.

That is, the lower bound is min{dDI,dP} and the upper bound is max{dDI,dP}.

Second, there is a potential temporal change in gathering pipeline distance. The data suggest

that this change is negligible: Drillinginfo data acquired in April 2022 contain 120,012 km of

operational natural gas gathering pipelines in the Permian Basin, and Drillinginfo data acquired

in July 2021 contain 119,512 km of the same category; Prism data shows an even higher level of

stability between February 2021 and April 2022. The temporal difference over 9 months represents

a <1% difference in distance, which is much smaller than the difference in distance observed

between the Drillinginfo and Prism products. As such, we disregard temporal uncertainty in our

estimates of pipeline distance. We use data acquired in April 2022 for temporal consistency across

platforms.

For the sake of argument, though, assume that the actual temporal change were more significant
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than the data indicated. Note that the emission factor may be (point) estimated as

ˆEF =
∑i q̂i

dDI+dP
2

,

where i indexes the pipeline emission sources in the survey region. A reasonable assumption is that

the linear distance of gathering pipelines in the Permian is a generally increasing function of time

due to increasing development and gas production. Thus, if dDI+dP
2 were an overestimate, then the

resulting emission factor would be an underestimate. This means that if data from April 2022 were

not representative of the conditions during those campaigns, using such data would most likely

render conservative the emission factor estimates for the four campaigns.

S4.2 Aggregate Pipeline Emissions

For each emission source i, there is an associated σi value that represents one standard deviation

of uncertainty (assuming a Gaussian distribution) for the estimated emission rate. This value fac-

tors in uncertainty in both integrated methane enhancement (IME) and wind speed [1]. To be

conservative, we do not assume independence of errors, given the potential for correlated errors

for nearby plumes. Hence, we do not add the errors in quadrature, which would be the canonical

method for quantifying uncertainty of a sum of independent Gaussian random variables. Rather,

we sum the individual standard deviations and use that figure as a wide measure of uncertainty for

the aggregate estimate. Mathematically, this is represented as

σtot = ∑
i

σi,

so our estimate of aggregate emissions, with uncertainty bounds, is given by

ˆqtot = ∑
i

q̂i ±σtot .
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S4.3 Emission Factor

The emission factor calculation essentially consists of two pieces of input data: (1) linear distance

of gathering pipelines and (2) aggregate emissions from gathering pipelines. Thus, to quantify

uncertainty in our emission factor estimates, we preserve the uncertainties from each of these

components by joining the methods in Sections S4.1 and S4.2.

We use simulation to calculate a 95% confidence interval for each emission factor. We assume

that both the linear distance of gathering pipelines and the aggregate emissions from gathering

pipelines are Gaussian random variables. Using the means and standard deviations derived in

Sections S4.1 and S4.2, we simulate 1,000,000 draws of each value (aggregate pipeline emissions

and pipeline distance), for each survey subset. We take the median of the resulting emission factors

as the point estimate, and the 2.5th and 97.5th percentiles as the 95% confidence interval.
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S5 Monte Carlo Simulation Experiment

S5.1 Experiment

In this experiment, we take all gathering pipeline emission sources with no ≥ 3 from the Fall 2019

campaign (which had the highest number of such sources) and place them randomly on a “line”

of length 27,518 km, the estimated linear distance of gathering pipelines covered in the Fall 2019

survey (no ≥ 3 region). We then consider a hypothetical ground survey of length 100 km. To

do this, we randomly select a 100 km interval along the 27,518 km line. The 100 km interval

may wrap around the 27,518 km line, so every source is equally likely to fall within the 100 km

interval. This 100 km interval is the simulated ground survey. (It should be noted that, in reality,

this 100 km survey could not be randomly placed due to restrictions on access to certain gathering

pipelines.) We then sum the persistence-adjusted emissions of the pipeline sources that fall in that

100 km interval and divide by the survey distance (100 km) to calculate an emission factor. We

conduct this process 10,000 times total for the 100 km distance, and report the 25th percentile,

50th percentile (median), and 75th percentile. Then, we repeat this process for lengths of multiple

100 between 200 km and 2,000 km inclusive. We compare these estimates to the estimate derived

from the entire survey region. The results are displayed in Figure S3.

S5.2 Accounting for Emissions Below the Minimum Detection Limit

Our goal in this study is to produce a conservative estimate of a gathering pipeline methane emis-

sion factor in the Permian. To that end, for our main estimates, we disregard emission sources in

the partial detection range and below the minimum detection limit.

However, the methane plume distributions suggest that the aerial instrument misses a sizable

range of emission sizes. Our hypothesis is that each bin containing lower emission rates should

have a higher frequency. Chen et al. 2022 used ground measurements and a boostrapping approach

to estimate emissions in the partial detection range and below the minimum detection limit [2].

However, here we are constrained by a limited number of existing ground-based measurements of
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gathering pipelines. Furthermore, the range of measurements is limited, as the largest recorded

gathering pipeline leak in a ground-based survey was 4.0 kg hr−1, significantly lower than the

minimum detection limit of the aerial instrument. We propose a method of simulating emissions

below the minimum detection limit using the exponential distribution, although we recognize the

limitations of such an approach. Our steps are summarized below.

1. Collect all emission sources qi for which no ≥ 3.

2. Select an interval [a,b] of the data which could feasibly be modeled by the exponential

distribution. (We test multiple ranges here and find that the results are not unreasonably

sensitive, as long as the tail of the distribution is not included in the interval.) Let Q =

{qi|qi ∈ [a,b]}. Calculate the mean of Q, and call this Q̄.

3. Choose a value λ > 0. Draw X1, ...,X100,000 ∼ Expo(λ ). Let S = {Xi | Xi ∈ [a,b]}. Calculate

the mean of S, and call this S̄. Repeat this process for different values of λ until S̄ ≈ Q̄; linear

regression is helpful here. Record this value of λ as λ0.

4. Count the number of qi values for which qi > a, and call this m. To determine the quantity

of small emission sources we should draw, we can solve for n:

n
n+m

=
∫ a

x=0
λ0e−λ0xdx.

5. Now, we draw Y1,Y2, ...∼ Expo(λ0), and take the first n values of Yi that are less than a (call

this set Y ). These are our simulated emission sources below the minimum detection limit.

6. We can take one of two approaches. The first, which makes generous assumptions about the

presence of below-detection-limit emissions, adds all elements of Y to the observed emis-

sion sources. The second, which makes more conservative assumptions, joins all observed

emission sources above a with the elements of Y .

The result of this process is displayed in Figure S3, with the bars indicating the contribution of

simulated emissions below the detection limit. We use the first approach from step 6 to illustrate
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that, even if the more generous assumptions are made, the contribution of these small emission

sources is relatively modest compared to the contribution of larger sources.
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S6 Figures and Tables

Figure S1: Coverage of the four aerial campaigns in the Permian Basin. Two roughly box-
shaped figures are visible; these covered the Delaware (west) and Midland (east) basins. The
entire Permian Basin extent is shown in pink [3]. Note that the Fall 2019 campaign coverage is
larger than — and generally a superset of — the coverage of the other campaigns. To see the
effect, we try limiting the gathering pipeline sources from the Fall 2019 campaign to those falling
within the coverage of later campaigns. We estimate aggregate gathering pipeline emissions (and
corresponding emission factors) of 17,000 (9.1), 20,000 (9.6), and 20,000 kg hr−1 (9.3 Mg y−1

km−1) in Fall 2019 for the regions encompassed by the Summer 2020, Summer 2021, and Fall
2021 campaigns respectively, compared to 90,000 kg hr−1 (10.0 Mg y−1 km−1) for the full Fall
2019 region.
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Campaign GPD
(km)

TPD
(km)

GPES
(count)

TPES
(count)

UPES
(count)

GPAF
(sources/km)

TPAF
(sources/km)

Fall 2019 79000 9900 331 11 13 0.0042 0.0011
Summer 2020 17000 1600 56 1 3 0.0034 0.0006
Summer 2021 18000 1800 80 1 8 0.0044 0.0006
Fall 2021 19000 1800 50 0 5 0.0026 0.0000

Table S1: Estimated activity factors for gathering and transmission lines in each
aerial campaign. GPD=Gathering Pipeline Distance, TPD=Transmission Pipeline Dis-
tance, GPES=Gathering Pipeline Emission Sources, TPES=Transmission Pipeline Emission
Sources, UPES=Unknown Pipeline Emission Sources, GPAF=Gathering Pipeline Activity Fac-
tor, TPAF=Transmission Pipeline Activity Factor.
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Figure S2: Mean persistence of gathering pipeline emission sources versus number of over-
flights, for the four aerial campaigns. The uncertainty bars represent one standard deviation in
each direction.
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Figure S3: Monte Carlo simulation experiment of emission factors derived from hypothetical
ground surveys. Under the liberal assumption that ground surveys have the potential to identify
any of the sources found in aerial surveys, a ground campaign covering 500 km or less will system-
atically underestimate (in median) a basin-wide emission factor. In the relatively unlikely scenario
that a ground survey identifies one or more high-emitting sources, the aggregate estimate may be
excessively high, as in the 75th percentile path. The bars represent the contribution of simulated
emission sources below the minimum detection limit (see Section S5.2).
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